
A Data Layout Description Language for Cogent

Christine Rizkallah

UNSW, Sydney, Australia

While purely functional languages allow for reasoning about

code equationally and productively, they often do not give

systems programmers sufficiently fine-grained control for

achieving the level of efficiency they desire. Our aim is to

reduce the effort required for producing reliable, efficient

systems.

Cogent [4] is a restricted uniqueness-typed purely func-

tional language for writing high-assurance systems code [1].

Cogent has a certifying compiler that generates efficient C

code [4, 5] by making use of Cogent’s uniqueness types.

Cogent programs do not exist in isolation. Typically, a

Cogent program constitutes a component of a larger system,

written in C, which is connected to the Cogent program us-

ing a foreign function interface (FFI). The aim, when building

a system using Cogent, is to write as much of it in Cogent

as possible, because the effort needed to verify low level

imperative C code is significantly higher than that needed

to verify Cogent code.

Cogent programs are defined as pure functions operating

on algebraic data types. The exact layout of these data types in
memory is determined by the Cogent compiler. Many of the

data structures in operating systems such as Linux could be

represented as algebraic types, however their exact memory

layout differs from that used by our Cogent compiler.

Therefore, the systems written in Cogent must maintain

a great deal of glue code to synchronise between two copies

of the same conceptual data structure [1]. As Cogent code

can only interact with the Cogent data representation, this

glue code is currently written in C. This code is tedious to

write, wasteful of memory, prone to bugs, has a significant

performance cost, and requires cumbersome manual verifi-

cation at a low level of abstraction. To solve these issues we

want to be able to write this type of code in Cogent.

To do so, we propose a new framework that allows for data

abstraction in Cogent programs. Rather than maintaining

two copies of data, we define a data description language,

Dargent, to describe the correspondence between Cogent

algebraic data types and the bits and bytes of kernel data

structures — what we call the layout of the data. With Dar-

gent, the programmer can write code as usual, manipulating

ordinary Cogent data types, and after compilation the gen-

erated C code will manipulate kernel data structures directly,

without extensive copying and synchronisation at run-time.

This will improve performance by eliminating redundant

code, simplifying the integration of C and Cogent code, and

enabling users to write and verify more Cogent code rather

Sapling 2019, November 15, 2019, Sydney, Australia

than reasoning about cumbersome C code. Dargent elimi-

nates the need for a standalone language for marshalling and

unmarshalling data (such as PADS [3], Nail [2]). Moreover,

it allows programmers a level of fine-grained control over

memory usage similar to that provided by C.

So far, we have designed Dargent, implemented some of

the compilation phases, and formalised our Dargent proto-

type design in Agda. We have also implemented some essen-

tial extensions to the Cogent language to accommodate the

data layout descriptions.

This talk will introduce Dargent, a language that is still

under development and that describes how a Cogent alge-

braic data type may be laid out in memory, down to the bit

level. Data descriptions in Dargent will influence the gen-

erated definitions and proofs that constitute the compilation

certificate between Cogent and the generated C code.

References

[1] SidneyAmani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb,

Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas

Sewell, Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin Klein, and

Gernot Heiser. 2016. Cogent: Verifying High-Assurance File System

Implementations. In International Conference on Architectural Support
for Programming Languages and Operating Systems. Atlanta, GA, USA,
175–188.

[2] Julian Bangert and Nickolai Zeldovich. 2014. Nail: A Practical Tool

for Parsing and Generating Data Formats. In Proceedings of the 11th
USENIX Symposium on Operating Systems Design and Implementation.
USENIX Association, Broomfield, CO, 615–628. https://www.usenix.
org/conference/osdi14/technical-sessions/presentation/bangert

[3] Kathleen Fisher and DavidWalker. 2011. The PADS project: an overview.

In Proceedings of the 14th International Conference on Database Theory.
ACM, New York, NY, USA, 11–17. http://doi.acm.org/10.1145/1938551.
1938556

[4] Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani, Japheth

Lim, Toby Murray, Yutaka Nagashima, Thomas Sewell, and Gerwin

Klein. 2016. Refinement Through Restraint: Bringing Down the Cost

of Verification. In International Conference on Functional Programming.
Nara, Japan.

[5] Christine Rizkallah, Japheth Lim, Yutaka Nagashima, Thomas Sewell,

Zilin Chen, Liam O’Connor, Toby Murray, Gabriele Keller, and Gerwin

Klein. 2016. A Framework for the Automatic Formal Verification of

Refinement from Cogent to C. In International Conference on Interactive
Theorem Proving. Nancy, France.

https://www.usenix.org/conference/osdi14/technical-sessions/ presentation/bangert
https://www.usenix.org/conference/osdi14/technical-sessions/ presentation/bangert
http://doi.acm.org/10.1145/1938551.1938556
http://doi.acm.org/10.1145/1938551.1938556

	References

