
Flogent: Infomation Flow Security for Cogent
Vivian Dang (UNSW)

In a world where the amount of sensitive information being put online is increas-
ing, the risk of this information falling into the hands of malicious people also
increases; this calls for more emphasis on information security within systems.

I have been working on Flogent, an information flow control system for the
programming language Cogent (O’Connor et al., 2016). Cogent is a higher-
order, purely functional language with uniqueness types. The semantics of Cogent
are designed to be easy to reason about, in accordance with its aim of reducing
the cost of verification. It is also designed for the implementation of operating
systems components such as file-systems, which can compromise the con�dentiality
and integrity of the entire system if there are vulnerabilites. As such, ensuring
Cogent software is free of vulnerabilites is particularly important.

Flogent intends to address the vulnerabilities that are observable on the pro-
gramming language level, specifically, secret data being directly accessed or mod-
ified by unauthorised processes which violates confidentiality and integrity, by ex-
tending the Cogent type system with an information flow control feature. Abadi
et al. (1999) generalised security type systems to accommodate a functional lan-
guage with higher order functions. Vassena et al. (2018) then adapted Abadi’s
work into a Haskell library called MAC.

My contribution so far is the design and implementation of two primitive opera-
tions within Minigent, a miniature version of Cogent. The operations are join
and unlock, derived from the join and unlabel operations of Abadi et al. (1999).
These are su�cient to ensure information flow control in programming language
libraries such as MAC (Vassena et al., 2018).

Bibliography

Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke (1999). “A
Core Calculus of Dependency”. In: Principles of Programming Languages. POPL
’99. San Antonio, Texas, USA: ACM, pp. 147–160. isbn: 1-58113-095-3. doi:
10.1145/292540.292555.

Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani, Japheth Lim,
Toby Murray, Yutaka Nagashima, Thomas Sewell, and Gerwin Klein (2016).
“Refinement Through Restraint: Bringing Down the Cost of Verification”. In: In-
ternational Conference on Functional Programming. ICFP 2016. Nara, Japan: ACM,
pp. 89–102. isbn: 978-1-4503-4219-3. doi: 10.1145/2951913.2951940.

Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye (2018). “MAC:
A verified static information-flow control library”. In: Journal of Logical and Al-
gebraic Methods in Programming 95, pp. 148–180. issn: 2352-2208. doi: 10.1016/
j.jlamp.2017.12.003.

1

https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/2951913.2951940
https://doi.org/10.1016/j.jlamp.2017.12.003
https://doi.org/10.1016/j.jlamp.2017.12.003

