
Combining Testing With Formal Verification in COGENT

(Talk Proposal)

Zilin Chen
CSIRO’s Data61 and UNSW Sydney

Zilin.Chen@data61.csiro.au

COGENT [4] is a purely functional programming lan-
guage for writing and formally verifying systems code. The
certifying COGENT compiler takes a COGENT source pro-
gram and produces an efficient C implementation (via a
uniqueness type system), along with an Isabelle/HOL proof
showing that the C code refines the semantics of the CO-
GENT source program. COGENT is a restricted language: it
does not have built-in support for loops or recursions, and
cannot allocate or free memory dynamically. To compensate
for expressiveness, a foreign function interface (FFI) to C is
provided. The portion written in C will have to be manually
verified against some functional correctness specification.
Typically, systems programmers define their (usually recur-
sive) abstract data types (e.g. linked lists, red-black trees)
and glue code between COGENT and the operating system
(OS) kernel in C. The former can usually be shared among
multiple implementations, amortising the cost of manual
verification. COGENT has been proved to be a viable ap-
proach for real-world systems programming. We used CO-
GENT for developing file systems and device drivers.

Traditionally, testing is perhaps the most widely used
method for ensuring the correntness of the programs. Even
with formal methods emerging, testing should not be re-
placed by formal verification, espcially during the develop-
ment phase. Testing is a useful complement to formal verifi-
cation: (1) It is well known that formal verification is very
costly (e.g. the formal proof of a ∼8.7k-line (in C) seL4
microkernel took about 11 person years [3]) and the work
usually requires a long time span to finish. Before the full
verification is complete, or when the specification changes,
testing provides some degree of confidence in the correct-
ness of the software in question. (2) For high-assurance ap-
plications, both formal verification and testing are required
by many international standards (e.g. the Common Criteria
for Information Technology Security Evaluation EAL7 1).
Technically, there are always some aspects of the system
which have to be assumed in formal proofs, and testing can
potentially uncover bugs in the trusted portion of the sys-
tem and tools used. (3) The systems implementations (even

1 https://www.commoncriteriaportal.org/files/ccfiles/
CCPART3V3.1R5.pdf

COGENT ones) are normally written by systems engineers,
who have rich experience with the low-level behaviours of
the OS, whereas the formal specification and the proofs are
developed by formal verification experts, who do not nec-
essarily read low-level programs a lot and understand sys-
tems programming idiomatics very much. Tests, if specified
semi-formally, can serve as a communication protocol be-
tween these two groups of experts.

In this talk, I will give a high-level introduction on how
we combine formal verification and testing in the context
of COGENT [1], discuss various testing methodologies that
are potentially beneficial, and discuss lessons learned from
our own experience. In particular, I will show how property-
based testing à la QuickCheck [2] enables an incremental
approach to a fully verified systems and provides an effective
interface between proof engineers and programmers that
helps obtain a verification-friendly design and the technical
challenges we encountered during this process.

References
[1] Zilin Chen, Liam O’Connor, Gabi Keller, Gerwin Klein, and

Gernot Heiser. 2017. The Cogent Case for Property-Based
Testing. In Workshop on Programming Languages and Oper-
ating Systems (PLOS). ACM, Shanghai, China, 1–7.

[2] Koen Claessen and John Hughes. 2000. QuickCheck: A
Lightweight Tool for Random Testing of Haskell Programs. In
Proceedings of the 5th International Conference on Functional
Programming. 268–279.

[3] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June An-
dronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai
Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood. 2009. seL4: Formal Ver-
ification of an OS Kernel. In ACM Symposium on Operating
Systems Principles. ACM, Big Sky, MT, USA, 207–220.

[4] Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney
Amani, Japheth Lim, Toby Murray, Yutaka Nagashima,
Thomas Sewell, and Gerwin Klein. 2016. Refinement Through
Restraint: Bringing Down the Cost of Verification. In Interna-
tional Conference on Functional Programming. Nara, Japan.

1 2019/10/11


