
Bounded Lattice Type System
Bidirectional type-directed program execution

Robert Smart

Overview

• BLTS is the type system of the experimental wombat language
• https://github.com/rks987/marsupial (wombat is a marsupial library)

• that code implements a small illustrative subset

• The subtyping hierarchy

• Relevant aspects of Wombat

• Procedures in the hierarchy

• The execution engine: type driven execution

https://github.com/rks987/marsupial

What are types?

Mathematical Foundations folk have claimed the notion of “type”:

“an element of one type can never be an element of another type”
– Mike Shulman

• Not English usage: a dog is also a mammal.

• Not even the way most Mathematicians think
• An integer is also a rational

• A group is also a monoid

BLTS tries to push the idea of a hierarchy of types to the limit.

Subtyping

Dog isA Mammal

Quadruped isA Animal

etc, etc

• Properties go down as you go up

• Diamonds must commute

• Prove or run-time check.

• Inverse pair of procedures:

• Up is 1-1 total, always succeeds.

• Down fails when input is not of
that subtype.

• Inverses of each other where
both defined.

Dog Cat

QuadrupedMammal

Animal

Human Crocodile

Lattice (order)

Least Upper Bound (lub / join / sup)

• Union in wombat

Greatest Lower Bound (glb / meet / inf)

• Intersection in wombat

Dog Cat

QuadrupedMammal

Animal

Human Crocodile

Union(Mammal,Quadruped)

Intersection(Mammal,Quadruped)
= Union(Dog,Cat)

Up from a Union

• Go down to components then up.
• The fact that one of the down links must

succeed is a defining property of Union.

• Combine results (case procedure).

• Union has the properties of Animal, but not
other properties of Mammal or Quadruped.

QuadrupedMammal

Animal

Union(Mammal,Quadruped)

+

Bounded Lattice

All sets have a lub, including empty set:

• Union() = Empty

All sets have glb

• Intersection() = Any

Dog Cat

QuadrupedMammal

Animal

Human Crocodile

Union(Mammal,Quadruped)

Intersection(Mammal,Quadruped)
= Union(Dog,Cat)

Any

Empty

Properties

• add property must be compatible

• Union inherits add from ComplexRational

• ComplexRational²=>ComplexRational

• Properties always come in a bundle
(Behaviour), but only the separate
properties are inherited downwards.

• A property is identified by:
• Name

• Behaviour that includes the name

• Type that conformsTo Behaviour

• ‘how’ index (because a type can
conform in more than one way).

Union(Rational,ComplexInt)

Rational

Int

ComplexInt

ComplexRational

Subset Types

• aka refinement types

• No properties of their own, all properties inherited from the
parent type.

• Subset restricted to a single value is an important special case.
• The only subset type supported in the current implementation.

• If a subtype in the isA hierarchy has no additional properties then it is
indistinguishable from a subset type.

Example program, language features

`test = { case $:Nat of [
{ $ = 0; 100}
{ $ = `n; n-1 }

]
};

print (test 4);
6 = test `x; print x;
100 = test `y; print y

Backquote when name used for first time
Explicit closure in braces, {}. $ is the input parameter
Case takes list of procedures, expects one to succeed.
= unifies, can fail. n-1 will fail if n:Nat=0.

Procedures in the Hierarchy

If

A=>B isA X=>Y

Then an ab::A=>B can be used where an X=>Y is expected.
So it must accept an X and return a Y. So we must have:
● X isA A, and
● B isA Y

The conditions are also sufficient.

Procedures form a sub bounded lattice

A=>B C=>D

Intersection(A,C)=>Union(B,D)

Empty=>Any

Any=>Empty

Union(A,C)=>Intersection(B,D)

case

failure

Bidirectional Type Driven Execution

● All subexpressions in a closure are executed.
● All optional/repeated/async execution of code is by passing closures to

an appropriate procedure, such as whileP, ifP, or caseP.
● All subexpressions in the closure execute simultaneously.

○ They start with type Any.
○ As they learn their type is lower they let neighbours know.
○ Neighbours are parent, children, and for local identifiers the id registry.

● Since all changes are monotonically downward this process must
terminate.

A simple example

Consider:
`x::Nat ; x = 3; x-1

● 3 has type Decimal (numbers with a finite number of decimal places – the type
of numeric constants) restricted to value 3.

● The = operator sets both sides to the Intersection.
● Then, since the left of the = is an identifier, it reports to the registry, which

then reports to all other cases of that identifier.
● Order of operation doesn’t matter: all operations commutative.

○ If = before :: then x set to Decimal/3 before :: op converts it to Nat/3
○ If :: before = then = op sees types Nat and Decimal/3: intersection is Nat/3

● Interpreter code (approximate):
class PvRequal(PVrun):

def pTrT(self,pt,rt):
newt = H.intersectionList([pt.tMindx[0],pt.tMindx[1],rt])
return MtVal(T.mfTuple,(newt,newt),None),newt

Procedure execution(1) { `x::Nat ; x = 3 ; x-1 }

(::)(x,Nat) (-)(x,1)(=)(x,3)

(::)

Any/?,
Type/Nat Nat/?,

Type/Nat

registry
x :: Any/?

(=)

Any/?,
Decimal/3 Decimal/3,

Decimal/3
:(Nat*Nat=>Nat)

Any/?,
Decimal/1
=>Any/?

various simplifications, e.g. (;) is also a procedure

Nat/?,
Nat/1

=>Nat/?

Asssume leftmost will
be done first

(-)

Any/?,
Decimal/1
=>Nat/?

Nat/?,
Nat/1

=>Nat/?

conversion operations don’t
affect the caller’s parameter

Procedure execution (2) { `x::Nat ; x = 3 ; x-1 }

(::)(x,Nat) (-)(x,1)(=)(x,3)

(::)

Nat/?,
Type/Nat Nat/?,

Type/Nat

registry
x :: Nat/?

(=)

Nat/?,
Decimal/3 Nat/3,

Nat/3

(-)

only middle can move next

Nat/?,
Nat/1

=>Nat/?

Nat/?,
Nat/1

=>Nat/?

Procedure execution (3) { `x::Nat ; x = 3 ; x-1 }

(::)(x,Nat) (-)(x,1)(=)(x,3)

(::)

Nat/3,
Type/Nat Nat/3,

Type/Nat

registry
x :: Nat/3

(=)

Nat/3,
Nat/3 Nat/3,

Nat/3

(-)

Nat/3,
Nat/1

=>Nat/?

Nat/3,
Nat/1

=>Nat/2

The case operator/procedure

case x:Nat of [{ $ = 0; 100}
{ $-1 }]

● Takes a list of procedures and passes input and output to each.
● Normally one succeeds giving the result, others fail.
● When a procedure fails it sets output to Empty, input to Any.
● Case does Intersection of inputs, Union of outputs.
● Allows case statement to run backwards.
● last line of interpreter code for case:

return L.bind(pt).tMindx[0].set(H.intersectionList(pts)),H.unionList(rts)

outputsinputs

questions?

Wombat welcomes:
● collaborators
● academic involvement

To come:
● Effect system (stuff that needs to be done in the right order)
● Proof system (minimize run time checks)
● full language + Wombat library
● Documentation

Properties
● The case statement doesn’t actually take a List of procedures because

the order doesn’t matter.
● It doesn’t take a Set (or multiset/bag) of procedures because procedures

don’t fully support equality (f==g can return .unknown).

It is, in wombat-speak, a Semiset. Functions using a Semiset must give the
same answer when member values occur more than once. This means that
it’s defining property must take a commutative idempotent action
procedure, and a value for the empty Semiset, and return the fold. Case is
consistent with this.

Action: f:R*X=>R, commutative means f(f(r,x1),x2) == f(f(r,x2),x1),
idempotent means f(f(r,x),x) == f(r,x)

