
Mu for Functional Langauges:
Retargeting the GHC Backend to a
Micro Virtual Machine

Pavel Zakopaylo, ANU

Supervisors: Steve Backburn, Antony Hosking
and Michael Norrish

Previous work by: Andrew Hall and Nathan Yong

2

Motivation

Haskell (GHC) is cross-platform, garbage-
collected, concurrent.

=> Mu abstracts over hardware (=> ISA),
provides GC, concurrency.

We want to demonstrate that Mu is suitable
for functional programming languages.

3

Overview

4

Haskell Source

Core Haskell

deSugar

STG

Cmm

Machine Code

codeGen

5

Haskell Source

Core Haskell

deSugar

STG

Cmm

Machine Code

codeGen

Mu IR

6

Why STG?

STG→Cmm is a big transition.

=> STG is still a functional language, Cmm is a portable
assembler.

Cmm code is at a similar level of abstraction to Mu IR.

But Cmm does not map well to VM semantics.

=> e.g. generated code hardwires the object layout,
including GC metadata.

7

Our Aim

Retarget the codeGen (STG→Cmm) phase of compilation
to Mu.

Use the existing infrastructure in GHC where possible.

=> The compiler itself is written in Haskell.

8

Storage

<int>

9

Heap Objects

Header <float> <ptr>

Payload

Another heap object

Code Ptr

Info Table

Code

Payload
GC Info

Object
Type

<int>

10

Heap Objects

Header <float> <ptr>

Payload

Another heap object

Code Ptr

Info Table

Code

Payload
GC Info

Object
Type

<int>

11

“Tables Next to Code”

Header <float> <ptr>

Payload

Another heap object

Info Table

Code

12

Mu Representation

Different types of info table have different fields.

=> Prefix rule used so we can have references to any type of heap object
anywhere.

Variable length payloads that can be made up of pointers or non-pointers.

=> Current solution: New Mu type for each closure. Effect on performance is
currently unknown.

=> TagRef64: ~10 instructions for most manipulations, ints are limited to 52
bits.

=> Unions: Not part of Mu spec, cause issues with concurrent GC

No way to implement “tables next to code.”

13

Stack

Calling convention is … unconventional.

=> Stack frames have the same layout as heap objects,
where the code represents a continuation.

=> i.e. “Calling” a function involves pushing a stack frame
and then jumping to the function’s entry point.

14

Stack Example

f :: Int -> Maybe Int -> Maybe Int
f = \x -> \y -> case y of

Nothing -> Nothing
Just y' -> Just (x + y')

Stack
x

HeaderCode Ptr

Info Table

Code

15

Stack Example

f :: Int -> Maybe Int -> Maybe Int
f = \x -> \y -> case y of

Nothing -> Nothing
Just y' -> Just (x + y')

Stack
x

Header
Info Table

Code

Tables next to code ..

16

Stack Example

f :: Int -> Maybe Int -> Maybe Int
f = \x -> \y -> case y of

Nothing -> Nothing
Just y' -> Just (x + y')

Stack
x

“Return Address”
Info Table

Code

Tables next to code ..

17

Stack Example

f :: Int -> Maybe Int -> Maybe Int
f = \x -> \y -> case y of

Nothing -> Nothing
Just y' -> Just (x + y')

Stack
x

“Return Address”
Info Table

Code

Tables next to code ..

18

In Mu...

f :: Int -> Maybe Int -> Maybe Int
f = \x -> \y -> case y of

Nothing -> Nothing
Just y' -> Just (x + y')

Let’s just use the standard calling convention!

=> Use CALL/RET instead of TAILCALL everywhere.

=> No need to roll our own stack.

 … this is probably more performant w.r.t. Mu

=> x can just be a saved SSA variable.

19

Project Status

Lots of boring but time-consuming infrastructure stuff was not
covered here.

=> We can create boot images for Zebu & Holstein.

Object Layout: Fixed.

Function Applications: Partially implemented.

Case statements : Next major goal.

=> Without these nothing gets evaluated.

Project repository: https://gitlab.anu.edu.au/mu/mu-client-ghc

https://gitlab.anu.edu.au/mu/mu-client-ghc

20

Summary

Questio
ns?

Haskell can use some of Mu’s abstractions, notably GC.

Translating storage units into Mu is non-trivial, because
GC.

It seems we can get away with changing the calling
convention.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

