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Motivation

Haskell (GHC) is cross-platform, garbage-
collected, concurrent.

=> Mu abstracts over hardware (=> ISA), 
provides GC, concurrency.

We want to demonstrate that Mu is suitable 
for functional programming languages.



3

Overview
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Why STG?

STG→Cmm is a big transition.

=> STG is still a functional language, Cmm is a portable 
assembler.

Cmm code is at a similar level of abstraction to Mu IR.

But Cmm does not map well to VM semantics.

=> e.g. generated code hardwires the object layout, 
including GC metadata. 
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Our Aim

Retarget the codeGen (STG→Cmm) phase of compilation 
to Mu.

 

Use the existing infrastructure in GHC where possible.

=> The compiler itself is written in Haskell.
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Storage
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Mu Representation

Different types of info table have different fields.

=> Prefix rule used so we can have references to any type of heap object 
anywhere.

 
Variable length payloads that can be made up of pointers or non-pointers.

=> Current solution: New Mu type for each closure. Effect on performance is 
currently unknown.

=> TagRef64: ~10 instructions for most manipulations, ints are limited to 52 
bits.

=> Unions: Not part of Mu spec, cause issues with concurrent GC

 

No way to implement “tables next to code.”
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Stack

Calling convention is … unconventional.

=> Stack frames have the same layout as heap objects, 
where the code represents a continuation.

=> i.e. “Calling” a function involves pushing a stack frame 
and then jumping to the function’s entry point.



14

Stack Example

f :: Int -> Maybe Int -> Maybe Int
f = \x -> \y -> case y of

Nothing -> Nothing
Just y' -> Just (x + y')
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In Mu...

f :: Int -> Maybe Int -> Maybe Int
f = \x -> \y -> case y of

Nothing -> Nothing
Just y' -> Just (x + y')

Let’s just use the standard calling convention!

=> Use CALL/RET instead of TAILCALL everywhere.

=> No need to roll our own stack.

    … this is probably more performant w.r.t. Mu

=> x can just be a saved SSA variable.
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Project Status

Lots of boring but time-consuming infrastructure stuff was not 
covered here.

=> We can create boot images for Zebu & Holstein.

 

Object Layout: Fixed.

Function Applications: Partially implemented.

Case statements : Next major goal.

=> Without these nothing gets evaluated.

Project repository: https://gitlab.anu.edu.au/mu/mu-client-ghc

https://gitlab.anu.edu.au/mu/mu-client-ghc
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Summary

Questio
ns?

Haskell can use some of Mu’s abstractions, notably GC.

 

Translating storage units into Mu is non-trivial, because 
GC.

 

It seems we can get away with changing the calling 
convention.
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