
Efficient stencil computations
in Accelerate
Josh Meredith, UNSW

1

Stencil computations

• Like map operation, but including neighbouring elements

2

1 2 3 4

5 6 7 8

9 10 11 12

f(1) f(2) f(3) f(4)

f(5) f(6) f(7) f(8)

f(9) f(10) f(11) f(12)

Input:

Map:

f = function of current element

Stencil computations

• Like map operation, but including neighbouring elements

3

1 2 3 4

5 6 7 8

9 10 11 12

f(1) f(2) f(3) f(4)

f(5) f(6) f(7) f(8)

f(9) f(10) f(11) f(12)

Input:

Map:

... … … …

… g(…) … …

… … … …

Stencil:

g = function of neighbouring elements f = function of current element

Stencil computations

• Why are they useful?

• Image processing (e.g. photoshop filters)

• Scientific applications (numerical simulations)

4

How do we implement these efficiently?

5

Benchmark example

6

High level Accelerate (Haskell) stencil:

benchmark :: Stencil3x3 Float -> Exp Float
benchmark = ((x,t,y)
 ,(l,c,r)
 ,(z,b,w)) = 4 * c + x - t + y + l + r + z - b + w

1 -1 1

1 4 1

1 -1 1

Benchmarks (teaser)

Time (ms) Runtime vs C++ (x slower)

Accelerate (current) 3052 28x

C++ (hand optimised) 110 1x

This work 112 1x

7

Problem #1: nested loops
• Accelerate currently uses general, but slow, 1-dimensional

indices

• We want an efficient implementation for 2D stencils, which
are very common

8

Problem #1: nested loops

9

0 1 2 3

4 5 6 7

8 9 10 11

1-dimensional:

x = i `mod` width

y = i `div` width

i = [0, width * height)

• Loop over i

• When we need x and y, calculate
them with mod and div

Problem #1: nested loops

• Loop over x and y

• When we need i, calculate it
based on the x, y and width

10

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

2-dimensional:

i = y * width + x

x = [0, width)

y = [0, height)

Summary problem #1

11

Time (ms) Speedup (step) Speedup (total)

1D loop 3242 - 1

Summary problem #1

12

Time (ms) Speedup (step) Speedup (total)

1D loop 3242 - 1

2D loop 1153 2.8 2.8

Problem #2: bounds checking

13

What do we do at the edges?

Problem #2: bounds checking

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

14

? ? ?

Naive solution: check and apply
the boundary condition on all
reads

Problem #2: bounds checking

? ? ? ? ? ?

? ?

? ?

? ? ? ? ? ?

15

? ? ?

Better solution: only check the
boundary condition when
computing border elements

Problem #2: bounds checking

? ? ? ? ? ?

? ?

? ?

? ? ? ? ? ?

16

Better solution: only check the
boundary condition when
computing border elements

Bounds checking: corners

? ? ? ? ? ?

? ?

? ?

? ? ? ? ? ?

17

• Accelerate arrays are row
major

• So we should include the
corners with the top and
bottom

Summary problem #2

18

Time (ms) Speedup (step) Speedup (total)

1D loop 3242 - 1

2D loop 1153 2.8 2.8

Bounds checking 144 8 22.5

Problem #3: Tiling
• Reading neighbouring elements means we have a lot of

duplicated reads

19

Solution: 1x1 tiles
• Does LLVM make tiling unnecessary?

• Let’s compare

20

Solution: 2x2 tiles

21

Before tiling:

36 reads

4 writes

After tiling:

16 reads

4 writes

Solution: 2x2 tiles

22

Before tiling:

36 reads

4 writes

After tiling:

16 reads

4 writes

144ms 350ms

Solution: 1x4 tiles

23

Before tiling:

36 reads

4 writes

After tiling:

18 reads

4 writes

Solution: 1x4 tiles

24

Before tiling:

36 reads

4 writes

After tiling:

18 reads

4 writes

144ms 110ms

Summary problem #3

25

Time (ms) Speedup (step) Speedup (total)

1D loop 3242 - 1

2D loop 1153 2.8 2.8

Bounds checking 144 8 22.5

1x4 tiles 110 1.3 29.5

Problem #4: Parallelisation
• How should we evaluate this in parallel?

26

Problem #4: Parallelisation
• Evaluate the edge regions sequentially

• Then, evaluate the main region in parallel using Accelerate’s
work stealer

27

Problem #4: Parallelisation
• No performance gains for this stencil

• Our example is very memory bottlenecked

• Many common stencils are similarly memory bottlenecked

28

Summary evaluation strategy

• Evaluate in several regions:

• Top & bottom, including corners, with bounds checking

• Left & right, excluding corners, with bounds checking

• Middle, without bounds checking

• Tile several elements at once on the outer axis

• Also parallelise across the outer (y) axis

• Vectorise across the inner (x) axis with LLVM

29

? ? ? ? ? ? ? ? ? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ? ? ? ? ? ? ? ? ?

