
Making aliasing safe again
An exploratory comparison of linear types and deny-capabilities.

Christopher J. Hall

Supervised by
Dr. Benjamin Lippmeier

Dr. Gabriele Keller

Programming Languages and Systems Group
School of Computer Science and Engineering

UNSW

Google Australia

SAPLING 2017-10-20

Pre(r)amble

The usual disclaimer: Any views, thoughts, and opinions expressed
belong solely to the author, and do not necessarily reflect those of

my employer or any organization I belong to.

I would like to thank the Australian government for supporting this
work through their Research Training Program (RTP) scholarship.

My background

I am a (Slowly) recovering C programmer

I learned just enough Haskell and Prolog to be dangerous

(but not enough to be very useful).

My interest areas includes:
Mutation and Aliasing,
Programming language design and implementation,
Static verification,
Proof theory,
Runtime systems, Garbage collectors, Hash tables.

Motivation

Motivation:

I want to be able to write statically safe efficient data structures
e.g. Robin-hood Linear-probing hash tables, B+ trees

This often means I need mutation and aliasing.

Relying on a compiler to convert pure code into code using
mutation is often sub-optimal.

Rust

“Rust is a systems programming language that runs
blazingly fast, prevents segfaults, and guarantees

thread safety.”

Promises:
I zero-cost abstractions
I guaranteed memory safety
I threads without data races
I minimal runtime

RAII

Resource Acquisition Is Initialization (‘RAII’) is a C++ design
pattern whereby resources are bound to object lifetimes.

The simplest case of this is
I object allocating some resources within constructor
I possibly changing these resources throughout object’s lifetime
I finally releasing all those resources in object’s destructor

RAII

Resource Acquisition Is Initialization (‘RAII’) is a C++ design
pattern whereby resources are bound to object lifetimes.

The simplest case of this is
I object allocating some resources within constructor
I possibly changing these resources throughout object’s lifetime
I finally releasing all those resources in object’s destructor

C++ RAII unique_ptr

struct MyResources {
void *data;
MyResources() { // Constructor
puts("Allocate my resources");
data = malloc(sizeof(int) * 100);

}
~MyResources() { // Destructor
puts("Free my resources");
free(data);

}
};

int main(void) {
MyResources r;
puts("Do some work");

}

Allocate my resources
Do some work
Free my resources

Rust RAII
struct MyResources {
void *data;
MyResources() { // Constructor
puts("Allocate my resources");
data = malloc(sizeof(int) * 100);

}
~MyResources() { // Destructor
puts("Free my resources");
free(data) ;

}
};

int main(void) {
MyResources r;
puts("Do some work");

}

Allocate my resources
Do some work
Free my resources

RAII example: smart pointer

struct MyResources {
std::unique_ptr<int[]> data;
MyResources() { // Constructor
puts("Allocate my resources");
data = std::unique_ptr<int[]>(new int [100]);

}
};

int main(void) {
MyResources r;
puts("Do some work");

}

Allocate my resources
Do some work

RAII example: smart pointer

struct MyResources {
std::unique_ptr<int[]> data;
MyResources() { // Constructor
puts("Allocate my resources");
data = std::unique_ptr<int[]>(new int [100]);

}
};

int main(void) {
MyResources r;
puts("Do some work");

}

Allocate my resources
Do some work

RAII example: rust

pub struct MyResources {
pub data: Vec<i8>,

}

impl MyResources {
pub fn new() -> MyResources {

println!("Allocate my resources");
MyResources {data: vec!(0, 100)}

}
}

fn main() {
let a = MyResources::new();
println!("Do some work");

}

Allocate my resources
Do some work

RAII example: rust

pub struct MyResources {
pub data: Vec<i8>,

}

impl MyResources {
pub fn new() -> MyResources {

println!("Allocate my resources");
MyResources {data: vec!(0, 100) }

}
}

fn main() {
let a = MyResources::new();
println!("Do some work");

}

Allocate my resources
Do some work

Limitations of linearity

fn main() {
let data = RefCell::new(0);
{

let mut r1 = data.borrow_mut();
*r1 += 1;

}
{

let mut r2 = data.borrow_mut();
*r2 += 1;

}
println!("{}", data.borrow());

}

2

Limitations of linearity

fn main() {
let data = RefCell::new(0);
let mut r1 = data.borrow_mut();
let mut r2 = data.borrow_mut();
println!("{}", data.borrow());

}

thread ’main’ panicked at ’already borrowed: BorrowMutError’ ...

Doubly linked lists are not linear

pub struct MyDoublyLinkedList<T> {
head: Option<Shared<Node<T>>>,
tail: Option<Shared<Node<T>>>,
len: usize,
/* magic incantation to avoid error ... */
marker: PhantomData<Box<Node<T>>>,

}

struct Node<T> {
next: Option<Shared<Node<T>>>,
prev: Option<Shared<Node<T>>>,
element: T,

}

Doubly linked lists are not linear

fn push_front_node(&mut self, mut node: Box<Node<T>>) {
node.next = self.head;
node.prev = None;
let node = Some(Shared::from(Box::into_unique(node)));

unsafe {
match self.head {
None => self.tail = node,
Some(mut head) => head.as_mut().prev = node,

}
}

self.head = node;
self.len += 1;

}

Rust toolbox

Rust toolbox

Pony

“Pony is an open-source, object-oriented,
actor-model, capabilities-secure, high-performance

programming language.”
Promises:

I type safe
I memory safe
I data race free
I deadlock free
I compiles to native code
I garbage collected

Deny capabilities

Capabilities:

A capability is an unforgeable token that (a) designates an object
and (b) gives the program the authority to perform a specific set of

actions on that object.

Deny capabilities:

Rather than indicate which operations are allowed on a reference,
deny capabilities indicate what operations are denied on other

references to the same object (aliases).

Deny capabilities

Capabilities:

A capability is an unforgeable token that (a) designates an object
and (b) gives the program the authority to perform a specific set of

actions on that object.

Deny capabilities:

Rather than indicate which operations are allowed on a reference,
deny capabilities indicate what operations are denied on other

references to the same object (aliases).

Pony principles

Pony distinguishes between what is denied to the actor that holds a
reference (local aliases) from what is denied to all other actors
(global aliases).

Some Pony principles:
I Every actor is single threaded
I Shared mutable data is hard
I Immutable data can be safely shared

(Some) Pony capabilities

Pony has 6 reference capabilities.
Some of the more interesting capabilities:

I Isolated - the only reference (globally or locally) to this data.
I Value - an immutable data structure.
I Reference - mutable non-isolated thread-local data.
I Box - read-only non-isolated thread-local data.

(Some) Pony capabilities

Pony has 6 reference capabilities.
Some of the more interesting capabilities:

I Isolated - the only reference (globally or locally) to this data.

I Value - an immutable data structure.
I Reference - mutable non-isolated thread-local data.
I Box - read-only non-isolated thread-local data.

(Some) Pony capabilities

Pony has 6 reference capabilities.
Some of the more interesting capabilities:

I Isolated - the only reference (globally or locally) to this data.
I Value - an immutable data structure.

I Reference - mutable non-isolated thread-local data.
I Box - read-only non-isolated thread-local data.

(Some) Pony capabilities

Pony has 6 reference capabilities.
Some of the more interesting capabilities:

I Isolated - the only reference (globally or locally) to this data.
I Value - an immutable data structure.
I Reference - mutable non-isolated thread-local data.

I Box - read-only non-isolated thread-local data.

(Some) Pony capabilities

Pony has 6 reference capabilities.
Some of the more interesting capabilities:

I Isolated - the only reference (globally or locally) to this data.
I Value - an immutable data structure.
I Reference - mutable non-isolated thread-local data.
I Box - read-only non-isolated thread-local data.

Pony capabilities example

class Cell
var data: U64 val
new create(d: U64 val) =>

data = d

actor Main
new create(env: Env) =>
let a: Cell ref = Cell.create(U64(0))
let b: Cell ref = a
a.data = a.data + 1
b.data = b.data + 1
env.out.print(a.data.string())
env.out.print(b.data.string())

2
2

Pony recover - easy isolated graph structures
class MyNode

var prev: (MyNode | None) = None
var next: (MyNode | None) = None
fun ref set(pre: MyNode, nex: MyNode) =>

prev = pre
next = nex

actor Main
new create(env: Env) =>
let s: MyNode iso = recover
let a: MyNode ref = MyNode.create()
let b: MyNode ref = MyNode.create()
let c: MyNode ref = MyNode.create()

a.set(c, b)
b.set(a, c)
c.set(b, a)

a
end

Pony doubly linked list

class MyListNode[A]
var item: (A | None)
var prev: (MyListNode[A] | None) = None
var next: (MyListNode[A] | None) = None

new create(i: (A | None) = None) =>
item = consume i

NB: MyListNode is polymorphic over both type and capability.

Pony doubly linked list

fun ref _push_front_node(node: MyListNode[A]) =>
node.prev = None
node.next = head

match head
| let head’: MyListNode[A] =>
head’.prev = node
head = node
if tail is None then
tail = node
end

else
head = node
tail = node

end

Conclusion

Both approaches have a lot to offer, the suitability of each likely
depends on usecase.

Rust’s linear types and borrow system allow us to perform safe
mutable updates in limited ways, but these restrictions allow us to
(for the most part) avoid a dependence on a runtime system.

Pony’s deny-capabilities allow us to combine arbitrary
thread-local mutation and aliasing with restricted cross-thread
aliasing, this combination allows us to more easily safely express
graph data structures, but this freedom relies on leaving memory
management to a runtime garbage collector.

Conclusion as a table

Type/Memory safe Datarace free GC Runtime locks
Rust(safe) yes yes RC opt-in1 sometimes2

Pony yes yes mark sweep3 no

Caveats:
I 1 dropchk edge case
I 2 some types perform run-time checking of mut/immut rules
I 3 thread-local mark-sweep, cross-thread delayed reference counting

The end

Thank you for your time
Any questions?

