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Why Whiley?

Whiley is an attempt to tackle the verifying compiler challenge.
See http://whiley.org.

I Designed by David Pearce, VUW, NZ (2009...)

I An open source programming language

I Explicit specifications for functions, methods, data structures

I Verifying compiler statically checks programs against
specifications, and prevents runtime errors.

I Aimed at embedded systems (quadcopters etc.), but also
general programming.

http://whiley.org


Whiley Features

These design choices are seen as critical to Whiley’s success:

1. Has a clean functional subset, with functions, records, tuples.
Distinguishes functions (side-effect free) from methods.

2. Uses unbounded arithmetic.

3. Uses call-by-value. Eliminates aliasing in functions.

4. (Outside scope of this talk) Restricted concurrency model:
actor model with no reentrant methods.

5. Computable pre/posts ( =⇒ bounded quants, 3-val. logic).



Other features:

I No global variables;

I Method side effects are limited to I/O (library side-effects).

Rich type system:

I Types with constraints: type pos is (int x) where x > 0

I And union, intersection, negation types: int&!pos x

I Structural subtyping (vs nominal)

I No ’inheritance’ between object types

I Flow-sensitive typing. (a la dynamic languages)



Whiley Example

import whiley.lang.*

type pos is (int x) where x > 0

type pos5 is (pos[] a) where |a| == 5

function sum(pos5 values) -> (pos result)

ensures result >= 5:

int i = 0

int total = 0

while i < |values| where 0 <= i && i <= total:

pos val = values[i]

assert 0 < val // actually: assume

total = total + val

i = i + 1

return total

method main(System.Console sys):

sys.out.println(sum([1,3,5,7,9]))



Why a WP semantics for Whiley?

I Every language should have a WP semantics!

I Current semantics is informal (user manual) or
implementation-oriented (compilers and interpreters, via a
custom bytecode). We would like a concise and abstract
semantics upon which to build tools.

I Could be a good basis for translating Whiley to Boogie.
An alternative verification path would be interesting.

Boogie is an intermedi-
ate verification language
from Microsoft Research.
See https://research.

microsoft.com/boogie.

https://research.microsoft.com/boogie
https://research.microsoft.com/boogie


Whiley Tools

Adapted from: ‘Verifying Whiley Programs using an Off-the-Shelf SMT Solver’,

by Henry J. Wylde, Eng489 Project Report, 2014, VUW, NZ.



Whiley Values

Here is a simplified data model for Whiley values, VAL, specified as
a Z free type. NAME is used for field names of records and for
named functions and methods.

[NAME ]

BOOL ::= false|true
WVal ::= null | bool〈〈BOOL〉〉 | int〈〈Z〉〉 | string〈〈seqZ〉〉

| tuple〈〈seqWVal〉〉
| array〈〈seqWVal〉〉
| record〈〈NAME +−→WVal〉〉 // Closed-World
| obj〈〈NAME +−→WVal〉〉 // Open-World
| ref 〈〈Z〉〉 // Not Today...
| func〈〈NAME 〉〉
| method〈〈NAME 〉〉

TYPE ==P WVal // Rich Semantic Types!



Whiley Values in Boogie...

type WField; // field names for records

type WMethodName; // names of methods

// The set of ALL Whiley values.

type WVal;

// For each subtype of WVal, we have:

function isInt(WVal) returns (bool);

function toInt(WVal) returns (int);

function fromInt(int) returns (WVal);

axiom (forall i:int :: isInt(fromInt(i)));

axiom (forall i:int :: toInt(fromInt(i)) == i);

axiom (forall v:WVal :: isInt(v)

==> fromInt(toInt(v)) == v);

axiom (forall v:WVal :: isInt(v)

==> !isNull(v) && !isBool(v) && ...);



Whiley Arrays in Boogie...

function isArray(WVal) returns (bool);

function toArray(WVal) returns ([int]WVal);

function arraylen(WVal) returns (int);

function fromArray([int]WVal,int) returns (WVal);

function arrayupdate(a:WVal, i:WVal, v:WVal)

returns (WVal)

{ fromArray(toArray(a)[toInt(i) := v], arraylen(a)) }

// Whiley array generators [val;len] are written as:

// fromArray(arrayconst(val), len)

// Array literals are written as:

// arrayconst(val0)[1 := val1][2 := val2] etc.

function arrayconst(val:WVal) returns ([int]WVal);

axiom (forall val:WVal,i:int :: arrayconst(val)[i]==val);



Our Example translated to Boogie, Part 1

function is_pos(x:WVal) returns (bool)

{ isInt(x) && toInt(x) > 0 }

function is_pos5(a:WVal) returns (bool)

{ isArray(a) && (forall i:int :: 0 <= i && i < arraylen(a)

==> is_pos(toArray(a)[i])) && arraylen(a) == 5 }

function sum__pre(values:WVal) returns (bool)

{ is_pos5(values) && true }

function sum(values:WVal) returns (result:WVal);

axiom (forall values:WVal, result:WVal ::

sum(values) == (result) && sum__pre(values)

==>

is_pos(result) &&

toInt(result) >= 5);



Our Example translated to Boogie, Part 2

procedure sum__impl(values:WVal) returns (result:WVal);

requires sum__pre(values);

ensures is_pos(result) && toInt(result) >= 5;

implementation sum__impl(values:WVal) returns(result:WVal)

{ var i : WVal where isInt(i);

var total : WVal where isInt(total);

var val : WVal where is_pos(val);

i := fromInt(0);

total := fromInt(0);

while (toInt(i) < arraylen(values))

invariant 0 <= toInt(i) && toInt(i) <= toInt(total);

{

assert 0 <= toInt(i) && toInt(i) < arraylen(values);

val := toArray(values)[toInt(i)];

assert 0 < toInt(val);

total := fromInt(toInt(total) + toInt(val));

i := fromInt(toInt(i) + 1);

}

result := total; return;

}



Verification Results

Whiley to Boogie+Z3
Whiley NotImpl Errors Partly Verified Fully Verified Total

NotImpl 18 4 17 49 88
20.5% 4.5% 19.3% 55.7%

Fully 114 6 8 277 405
Verified 28.1% 1.5% 2.0% 68.4%

132 10 25 326 493
26.8% 2.0% 5.0% 66.1%



132 NotImplementedYet?

I indirect invoke (12 tests)

I lambda functions (12 tests)

I references, new (17 tests), and dereferencing (17 tests)

I switch (14 tests) [Whiley semantics]

I functions/methods with multiple return values (4 tests)

I continue statements and named blocks (3 tests)

I bitwise operators (13 tests) [None in Boogie]

I some kinds of complex constants



10 BPL Errors and Translator Exceptions?

I Bugs in my generation of && and || operators (equal
precedence in Boogie, different in Whiley);

I Whiley variable name is a reserved word in Boogie (’type’,
’old’);

I Assigning to a function input (immutable in Boogie);

I Undeclared record field name (not used in code, only in
implicit typing predicates);

I Same variable used as program variable and quantified
variable;

I Proof obligation uses quantified variable;

I functions with no return values!



25 programs that Boogie/Z3 cannot verify?

I Complex Valid 2.whiley: cannot prove append typing
preconditions (array equality issue?)

I Complex Valid 8.whiley: ibid.

I ConstrainedList Valid 14.whiley: Cannot prove

xs[0] = 1 =⇒ some{i ∈ 0 . . . |xs| | xs[i ] > 0}

I DoWhile Valid 5.whiley: differing semantics for do-while.
Should loop invariant hold before first iteration?

I DoWhile Valid 8.whiley: ibid

I Fail Valid 1.whiley: test is invalid when input x is null?



Conclusions

I Whiley to Boogie translator is already useful.

I Boogie verifier can already prove 66% of ALL tests.

I Excluding NotImplYet: Boogie can prove 95.2% of the tests
that Whiley proves, and 70% of the tests that Whiley cannot
prove (with 10 second limit).

I Boogie is a useful verification intermediate language.

I My ’untyped’ translation of Whiley to Boogie is working well.

I Future work: indirect invoke (calling unknown functions); then
full object-orientation;


	Why Whiley?
	Why a WP semantics for Whiley?
	The Mapping into Boogie
	Values and Types
	Our Example translated to Boogie

	Translation Challenges?
	Verification Results

