
How to make Whiley Boogie

Mark Utting
School of Business

University of the Sunshine Coast
Queensland, AUSTRALIA

Email: utting@usc.edu.au

David Pearce, Victoria University of Wellington

SAPLING 21 Nov 2016

Outline

Why Whiley?

Why a WP semantics for Whiley?

The Mapping into Boogie
Values and Types
Our Example translated to Boogie

Translation Challenges?

Verification Results

Why Whiley?

Whiley is an attempt to tackle the verifying compiler challenge.
See http://whiley.org.

I Designed by David Pearce, VUW, NZ (2009...)

I An open source programming language

I Explicit specifications for functions, methods, data structures

I Verifying compiler statically checks programs against
specifications, and prevents runtime errors.

I Aimed at embedded systems (quadcopters etc.), but also
general programming.

http://whiley.org

Whiley Features

These design choices are seen as critical to Whiley’s success:

1. Has a clean functional subset, with functions, records, tuples.
Distinguishes functions (side-effect free) from methods.

2. Uses unbounded arithmetic.

3. Uses call-by-value. Eliminates aliasing in functions.

4. (Outside scope of this talk) Restricted concurrency model:
actor model with no reentrant methods.

5. Computable pre/posts (=⇒ bounded quants, 3-val. logic).

Other features:

I No global variables;

I Method side effects are limited to I/O (library side-effects).

Rich type system:

I Types with constraints: type pos is (int x) where x > 0

I And union, intersection, negation types: int&!pos x

I Structural subtyping (vs nominal)

I No ’inheritance’ between object types

I Flow-sensitive typing. (a la dynamic languages)

Whiley Example

import whiley.lang.*

type pos is (int x) where x > 0

type pos5 is (pos[] a) where |a| == 5

function sum(pos5 values) -> (pos result)

ensures result >= 5:

int i = 0

int total = 0

while i < |values| where 0 <= i && i <= total:

pos val = values[i]

assert 0 < val // actually: assume

total = total + val

i = i + 1

return total

method main(System.Console sys):

sys.out.println(sum([1,3,5,7,9]))

Why a WP semantics for Whiley?

I Every language should have a WP semantics!

I Current semantics is informal (user manual) or
implementation-oriented (compilers and interpreters, via a
custom bytecode). We would like a concise and abstract
semantics upon which to build tools.

I Could be a good basis for translating Whiley to Boogie.
An alternative verification path would be interesting.

Boogie is an intermedi-
ate verification language
from Microsoft Research.
See https://research.

microsoft.com/boogie.

https://research.microsoft.com/boogie
https://research.microsoft.com/boogie

Whiley Tools

Adapted from: ‘Verifying Whiley Programs using an Off-the-Shelf SMT Solver’,

by Henry J. Wylde, Eng489 Project Report, 2014, VUW, NZ.

Whiley Values

Here is a simplified data model for Whiley values, VAL, specified as
a Z free type. NAME is used for field names of records and for
named functions and methods.

[NAME]

BOOL ::= false|true
WVal ::= null | bool〈〈BOOL〉〉 | int〈〈Z〉〉 | string〈〈seqZ〉〉

| tuple〈〈seqWVal〉〉
| array〈〈seqWVal〉〉
| record〈〈NAME +−→WVal〉〉 // Closed-World
| obj〈〈NAME +−→WVal〉〉 // Open-World
| ref 〈〈Z〉〉 // Not Today...
| func〈〈NAME 〉〉
| method〈〈NAME 〉〉

TYPE ==P WVal // Rich Semantic Types!

Whiley Values in Boogie...

type WField; // field names for records

type WMethodName; // names of methods

// The set of ALL Whiley values.

type WVal;

// For each subtype of WVal, we have:

function isInt(WVal) returns (bool);

function toInt(WVal) returns (int);

function fromInt(int) returns (WVal);

axiom (forall i:int :: isInt(fromInt(i)));

axiom (forall i:int :: toInt(fromInt(i)) == i);

axiom (forall v:WVal :: isInt(v)

==> fromInt(toInt(v)) == v);

axiom (forall v:WVal :: isInt(v)

==> !isNull(v) && !isBool(v) && ...);

Whiley Arrays in Boogie...

function isArray(WVal) returns (bool);

function toArray(WVal) returns ([int]WVal);

function arraylen(WVal) returns (int);

function fromArray([int]WVal,int) returns (WVal);

function arrayupdate(a:WVal, i:WVal, v:WVal)

returns (WVal)

{ fromArray(toArray(a)[toInt(i) := v], arraylen(a)) }

// Whiley array generators [val;len] are written as:

// fromArray(arrayconst(val), len)

// Array literals are written as:

// arrayconst(val0)[1 := val1][2 := val2] etc.

function arrayconst(val:WVal) returns ([int]WVal);

axiom (forall val:WVal,i:int :: arrayconst(val)[i]==val);

Our Example translated to Boogie, Part 1

function is_pos(x:WVal) returns (bool)

{ isInt(x) && toInt(x) > 0 }

function is_pos5(a:WVal) returns (bool)

{ isArray(a) && (forall i:int :: 0 <= i && i < arraylen(a)

==> is_pos(toArray(a)[i])) && arraylen(a) == 5 }

function sum__pre(values:WVal) returns (bool)

{ is_pos5(values) && true }

function sum(values:WVal) returns (result:WVal);

axiom (forall values:WVal, result:WVal ::

sum(values) == (result) && sum__pre(values)

==>

is_pos(result) &&

toInt(result) >= 5);

Our Example translated to Boogie, Part 2

procedure sum__impl(values:WVal) returns (result:WVal);

requires sum__pre(values);

ensures is_pos(result) && toInt(result) >= 5;

implementation sum__impl(values:WVal) returns(result:WVal)

{ var i : WVal where isInt(i);

var total : WVal where isInt(total);

var val : WVal where is_pos(val);

i := fromInt(0);

total := fromInt(0);

while (toInt(i) < arraylen(values))

invariant 0 <= toInt(i) && toInt(i) <= toInt(total);

{

assert 0 <= toInt(i) && toInt(i) < arraylen(values);

val := toArray(values)[toInt(i)];

assert 0 < toInt(val);

total := fromInt(toInt(total) + toInt(val));

i := fromInt(toInt(i) + 1);

}

result := total; return;

}

Verification Results

Whiley to Boogie+Z3
Whiley NotImpl Errors Partly Verified Fully Verified Total

NotImpl 18 4 17 49 88
20.5% 4.5% 19.3% 55.7%

Fully 114 6 8 277 405
Verified 28.1% 1.5% 2.0% 68.4%

132 10 25 326 493
26.8% 2.0% 5.0% 66.1%

132 NotImplementedYet?

I indirect invoke (12 tests)

I lambda functions (12 tests)

I references, new (17 tests), and dereferencing (17 tests)

I switch (14 tests) [Whiley semantics]

I functions/methods with multiple return values (4 tests)

I continue statements and named blocks (3 tests)

I bitwise operators (13 tests) [None in Boogie]

I some kinds of complex constants

10 BPL Errors and Translator Exceptions?

I Bugs in my generation of && and || operators (equal
precedence in Boogie, different in Whiley);

I Whiley variable name is a reserved word in Boogie (’type’,
’old’);

I Assigning to a function input (immutable in Boogie);

I Undeclared record field name (not used in code, only in
implicit typing predicates);

I Same variable used as program variable and quantified
variable;

I Proof obligation uses quantified variable;

I functions with no return values!

25 programs that Boogie/Z3 cannot verify?

I Complex Valid 2.whiley: cannot prove append typing
preconditions (array equality issue?)

I Complex Valid 8.whiley: ibid.

I ConstrainedList Valid 14.whiley: Cannot prove

xs[0] = 1 =⇒ some{i ∈ 0 . . . |xs| | xs[i] > 0}

I DoWhile Valid 5.whiley: differing semantics for do-while.
Should loop invariant hold before first iteration?

I DoWhile Valid 8.whiley: ibid

I Fail Valid 1.whiley: test is invalid when input x is null?

Conclusions

I Whiley to Boogie translator is already useful.

I Boogie verifier can already prove 66% of ALL tests.

I Excluding NotImplYet: Boogie can prove 95.2% of the tests
that Whiley proves, and 70% of the tests that Whiley cannot
prove (with 10 second limit).

I Boogie is a useful verification intermediate language.

I My ’untyped’ translation of Whiley to Boogie is working well.

I Future work: indirect invoke (calling unknown functions); then
full object-orientation;

	Why Whiley?
	Why a WP semantics for Whiley?
	The Mapping into Boogie
	Values and Types
	Our Example translated to Boogie

	Translation Challenges?
	Verification Results

