
Memory Optimization for C implementations of
Whiley

Min-Hsien Weng, Dr. Bernhard Pfahringer and Dr. Mark Utting
University of Waikato

Hamilton, New Zealand
mw169@students.waikato.ac.nz utting@usc.edu.au

Call-by-value semantics[1] makes Whiley program verification easy at compile-time.
But when translating Whiley program into C code, the implementation has several per-
formance issues: a) excessive copying overheads as arrays are immutable, and are copied
before each update; b) severe memory leaks as arrays are allocated on the heap and not
de-allocated.

Static analysis techniques are applied to improve the efficiency of generated C11 code.
The live variable analysis is first used to determine dead variables, which will not be
used/read afterwards, and then eliminate unnecessary copying of data structures. Then de-
allocation analysis checks code properties and chooses suitable macro to change runtime
de-allocation flag, to ensure at each program the allocated memory space can only be freed
by exactly one variable.

Problem Size N N + D C C + D
100,000 4,800,256 0 1,600,248 0
1,000,000 48,000,264 0 16,000,256 0
10,000,000 480,000,272 0 160,000,264 0

Table 1: Memory Leaks of ’Reverse’ Test Case using Valgrind Tool

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 100000 1e+06 1e+07

T
o
ta

l
E
x
e
c
u
ti

o
n
 T

im
e
 (

S
e
c
o
n
d
)

Problem Size (log N)

Reverse Test Case

Naive + De-allocated
Naive

Copy Reduced
Copy Reduced + De-allocated

Figure 1: Execution Time of ’Reverse’ Test Case

The ’Reverse’ Whiley program is translated into naive (N), naive + memory de-allocation
(N+D), copy reduced (C) and copy Reduced + memory de-allocation (C+D). Copy opti-
mization increases speed up to 2.1x, and de-allocation macro reduces the leaks effectively.
For other benchmark programs, the speed-up varies from 1.0x to 2.9x.

References

[1] David J Pearce and Lindsay Groves. Designing a verifying compiler: Lessons learned
from developing whiley. Science of Computer Programming, 113:191–220, 2015.

