
Verifying Whiley Programs with Boogie

Mark Utting

Senior Lecturer, ICT

University of the Sunshine Coast

Email: utting@usc.edu.au

Whiley is a verification-friendly programming language that employs ex-
tended static checking to eliminate many errors at compile time. It is a hybrid
object-oriented and functional programming language, is intended as a platform
for research in software verification [2], and comes with its own verification en-
gine for checking program correctness.

This paper describes a translator (Wy2B) from Whiley to Boogie [1]. Boogie
is an intermediate verification language from Microsoft Research that is intended
as a back-end for multiple kinds of languages The Wy2B translator is being
developed as part of a project to develop a weakest precondition semantics
for Whiley. The translation of Whiley to Boogie helps to clarify the weakest
precondition semantics of Whiley and also gives an alternative verification path
for Whiley programs.

We describe several challenges of mapping Whiley to Boogie, such as:

• modelling the rich Whiley type system (structural types, user-defined sub-
types, and union, intersection and negation types);

• translating the flow sensitive typing of Whiley, into Boogie’s static type
system;

• translating type-sensitive equality;

• translating Whiley’s implicit pre/postconditions, which assume a three-
valued logic, into Boogie’s two-valued pre/postconditions.

We also discuss the e↵ectiveness of the translator as an alternative verifica-
tion path, in terms of what Whiley language features can be translated, what
percentage of valid Whiley programs can be verified using theWy2B+Boogie+Z3
toolchain, and the outstanding limitations and challenges.

References

[1] Mike Barnett et al. Boogie: A modular reusable verifier for object-oriented
programs. In Proceedings of the 4th International Conference on Formal
Methods for Components and Objects, FMCO’05, pages 364–387, Berlin,
Heidelberg, 2006. Springer-Verlag.

[2] David J. Pearce and Lindsay Groves. Whiley: a platform for research in
software verification. In Proceedings of the Conference on Software Language
Engineering (SLE), pages 238–248, 2013.

1


