
MuPy
A First Language Client for Mu Micro Virtual Machine

By: John Zhang
Supervised by: Prof. Steve Blackburn
Received help from: Kunshan Wang

Overview

● Motivation & Objective
● Outline of Contributions
● MuPy Translation Process

○ Overview
○ Graph Transform
○ MuType
○ Launcher

● Conclusion & Future Work

Language Implementation Strategies

● Monolithic
○ everything from ground up;
○ many difficult challenges.

● Virtual Machine Based
○ difficult elements already

taken care of;
○ heavy weight (JVM, .Net);
○ highly catered towards its

support language.

libL

OS

LVM

L

libJ

OS

JVM

L

libL LVM

● A lightweight abstraction over
main concerns:
○ concurrency (threads),
○ memory (GC),
○ hardware (JIT, back-ends).

● Key design features:
○ native GC and JIT,
○ cross-language reuse,
○ minimal (lightweight, verifiable).

● Mu -- a concrete µVM instance
○ online spec available (https://github.

com/microvm/microvm-spec/wiki).

Micro Virtual Machine (µVM)

libL

OS

LVM

MIcro VM

L

https://github.com/microvm/microvm-spec/wiki
https://github.com/microvm/microvm-spec/wiki
https://github.com/microvm/microvm-spec/wiki

● Claims needs to be tested.
○ Can Mu actually support a non-trivial

language?
○ How good is the design?

● Test by implementation
○ a reference implementation of Mu in

Scala is available;
○ build a real language client.

The need for testing

Outline of Contributions

● Artefact
○ a back-end that can translate many essential

features of RPython.
■ strings, classes, exceptions etc.
■ small scale programs such as GC Bench.

○ a launcher to run the MuPy code bundle.
● Assistance in Mu research

○ encountered and raised issues, stretched the design
of Mu.

○ motivated many additional features
■ Heap Allocation Initialisation Language (HAIL).
■ Mu Native Interface (MuNI).

Language of Choice -- RPython

Python

RPython

Backend (C)

Interprets

Translate

● Restricted Python (RPython)
○ a compiler framework for implementing

interpreters of managed languages.
○ generates a meta-tracing JIT, and

handles GC.
● Strategically critical

○ used to produce high performance
implementation of other languages.
■ (Python, PHP, Erlang, JavaScript, Haskell etc.)

● Objective
○ a Mu back-end and language client for

RPython.

Overview of Translation Process

Overview of Translation Process

RPython
Bytecode

Typed Graph

Flow Graph

C Code

Abstract interpretation

Type inference &
specialisation

Various Transformations
(exception, GC etc.)

Overview of Translation Process

RPython
Bytecode

Typed Graph

Flow Graph

C Code

Abstract interpretation

Type inference &
specialisation

Various Transformations
(exception, GC etc.)

Typed Graph

µIR bundle

Mu

Mu-compliant
Graph

MuTyped
Graph

Exception & Graph transform

MuTyper type map

Code Generation

Launcher

Overview of Translation Process

.funcdef @f VERSION @f_v1 <@f_sig> (%x0) {

 %blk0:

%p0 = NE <@i64> %x0 @i64_2

BRANCH2 %blk2 %blk1

 %blk1:

%y1 = ADD <@i64> %x0 @i64_4

BRANCH %blk3

 %blk2:

%y2 = ADD <@i64> %x0 @i64_6

BRANCH %blk3

 %blk3:

%y3 = PHI {%blk1: %y1, %blk2: %y2}

%z2 = PHI {%blk1: @i64_0, %blk2: @i64_5}

%y4 = ADD <@i64> %y3 @i64_1

...

}

● Goal: Transform the structure of the graph to
be in compliant to Mu.

● Necessary RPython back-end optimisations:
○ no-op removal
○ exception raising operations to function call
○ SSI to SSA conversion

● Tasks for MuPy
○ graph cleaning
○ adding transitional blocks
○ exception transform

Graph Transform

Graph Transform --
Exception Transform

● Mu supports exception handling
○ execution interruption
○ throw and catch exception objects (THROW,

LANDINGPAD);
○ EXC clause for instructions;
○ efficient stack unwinding.

● Transform strategy:
○ pack exception type and value into a single heap

object and throw it;
○ define EXC clause and catching block;
○ use ll_issubclass to check matching exception

type.

MuTyper

● Goal: Maps the type system (LLTS -> MuTS)
○ Analogous to RPython Typer (RTyper)
○ Tasks:

■ maps the types of variables and constants in the
graph;

■ maps the constant values in the graph;
■ converts global heap objects ‘constants’ to global

cells;
■ maps the operations to Mu instructions.

● Not well supported by Mu (used to)
● 2 approaches:

○ compiler generates bundle entry initialisation routine.
○ specify heap object type and value before launch.

■ Motivated the HAIL language in recent Mu spec.
■ A new path to be explored in future.

MuTyper -- Heap Object Initialisation

(<* struct StdOutBuffer { super=..., inst_linebuf=... }>)

MuTyper -- Mapping Instructions

● Only convert numeric and pointer operations
○ Ignore GC and JIT

● Address operations
○ raw memory access and compiler intrinsics

raw_memcopy() -> memcpy()

○ behavioural imitation has significant performance
cost.
■ motivated MuNI in recent spec.

Launcher

● Part of the MuPy language client
● Load and run the bundle code

○ initialise the command-line arguments object (list of
strings) in the heap.

○ sets up the trap handler
■ used for print output

○ various other initialisations
■ libraries
■ part of future work

● Milestones achieved in developing a Mu
back-end for RPython
○ can correctly translate many essential features

(class, exceptions, arithmetics etc.);
○ can translate small scale programs (GC Bench).

● Motivated the research of Mu and enriched
its scope.
○ HAIL
○ MuNI

Summary

● Adapt to the most recent Mu spec
○ adopt HAIL and MuNI in translation
○ there has been significant changes in Mu spec.

● Fully port RPython
○ RPython standard library

● Test target: RPython Simple Object Machine
(SOM).

Future Goals

Thank You!

Graph Transform -- Input

● RPython Control Flow
Graph (CFG)
representation
○ function as graphs.
○ blocks, operations &

links.
○ Single Static Information

(SSI) variables and
constants.
■ Extension to SSA

form.

.funcdef @f VERSION @f_v1 <@f_sig> (%x0) {

 %blk0:

%p0 = NE <@i64> %x0 @i64_2

BRANCH2 %blk2 %blk1

 %blk1:

%y1 = ADD <@i64> %x0 @i64_4

BRANCH %blk3

 %blk2:

%y2 = ADD <@i64> %x0 @i64_6

 %blk3:

%y3 = PHI {%blk1: %y1, %blk2: %y2}

%z2 = PHI {%blk1: @i64_0, %blk2: @i64_5}

%y4 = ADD <@i64> %y3 @i64_1

...

}

Graph Transform -- Desired Mu IR

● Similar structure
○ Functions contains

instruction blocks
● Differences:

○ Explicit branching
instructions

○ SSA instead of SSI
■ Can be handled by RPython

back-end optimisations

Graph Transform --
Transitional Blocks

● Two links carry the different arguments to
the same block.
○ Problematic for PHI instruction.
○ Adding transitional blocks.

Graph Transform --
Exception Transform

● Elements in RPython CFG
○ last_exception exit switch
○ Links having different Exception classes as exit

cases.
○ Each graph has a unique exception raise block.

● Intended to be further specialised into
concrete exception mechanisms.

Graph Transform --
Exception Transform

class MyError(Exception):

def __init__(self, msg):

 self.message = msg

try:

raise_error_1()

except MyError as e:

print e.message

except IndexError:

print "Caught"

def raise_error_1():

raise MyError("1st msg")

Graph Transform --
Exception Transform

MuTyper -- Type Map

LLTS MuTS

Signed int<64>

Unsigned int<64>

Char int<8>

Bool int<1>

Void void

Struct struct

FixedSizeArray array

Array<T> hybrid<int<64> T>

Ptr<T> ref<T>

Ptr<FuncType> funcref

Address ptr

MuTyper -- Constant to Global Cells

● Initialised global heap objects as Constants
in the graph
○ Does not correspond to constants (values) in Mu,

but global cells (global memory).
● Strategy:

○ replace these elements in the graph with values
loaded from Mu global cells.

.funcdef @__init__ VERSION @__init___v1 <@__init___sig> ()

{

%blk_0:

 %obj_3 = NEWHYBRID <@hyb_rpy_string_hdr_i8 @int_64> @i64_10

 %obj_4 = GETIREF <@hyb_rpy_string_hdr_i8> %obj_3

 %obj_5 = GETFIXEDPARTIREF <@hyb_rpy_string_hdr_i8> %obj_4

 %obj_6 = GETFIELDIREF <@stt_rpy_string_hdr 0> %obj_5

 STORE <@int_64> %obj_6 @i64_-1 // Hash code field

 %obj_7 = GETFIELDIREF <@stt_rpy_string_hdr 1> %obj_5

 STORE <@int_64> %obj_7 @i64_10 // Length field

 %obj_8 = GETVARPARTIREF <@hyb_rpy_string_hdr_i8> %obj_4

 %obj_9 = SHIFTIREF <@int_8 @int_64> %obj_8 @i64_0

 STORE <@int_8> %obj_9 @i8_76 // 'L'
 %obj_10 = SHIFTIREF <@int_8 @int_64> %obj_8 @i64_1

 STORE <@int_8> %obj_10 @i8_97 // 'a'
 ...

 CALL <@9_main_sig> @9_main ()

 COMMONINST @uvm.thread_exit

}

● Implementation
○ “Loading constants as

variables from global cell”
strategy

○ Create an __init__
function and fill it with
initialisation code.

○ Insert a call to program
entry point, and a
thread_exit instruction.

Heap Object Initialisation Routine

Other Progress

● Print statements
○ Using a ‘magic’ function call that is translated to a

TRAP instruction.
○ On the client side, handle the trap and print on

terminal.

def rpython_print_newline():

 buf = stdoutbuffer.linebuf;

 s = buf + '\n';

 from ... import uir_fake_print;

 uir_fake_print(s);

.funcdef @117_rpython_print_newline VERSION ... <...> ()

{

%blk_0:

 ...

 %trap = TRAP <@void> KEEPALIVE(%s_1)

 ...

}

