
Evaluating Kiama
Abstract State Machines

for a Java Implementation
Pongsak Suvanpong and Anthony Sloane

Department of Computing, Macquarie University

Kiama

An example of a language processing pipeline in
Kiama

tree
tree

tree

A Scala internal DSL for language processing

tree

we use ASM at
the last stage of

the pipeline

Objectives
• We are interested in using Abstract State Machines

(ASM) to execute programming languages.

• We want to develop techniques in Scala, so that we
can take ASM definitions and quickly code them in
Scala.

• Our aim is to be able to closely replicate the ASM
definition written in the JBOOK.

Abstract State Machines(ASM)
• “ASM captures in mathematically rigorous yet

transparent form some fundamental operational
intuitions of computing, and the notation is
familiar from programming practice and
mathematical standards.”[JBOOK]

• Pseudocode (notation) over abstract data (abstract
state).

• Discrete time-step execution model.

ASM
State and Rule

• A state in ASM is an n-arity function  
f(a1,a2,...,an) where a1, a2, ..., an are called locations and f is the
state name

• A state can be thought as a memory unit of ASM which allows
the read/write operations. The location abstracts away the
memory addressing.

• In each time-step, all rules are executed which may update
states.

• An update to a state is not visible until the next time-step.

• Rules are the control logic of ASM.

ASM execution model

Image source: The Lipari Guide

States in
current time-step

States in next
time-step

ASM
example: estimate log2(9)

The number of steps is
the result.

nullary state

Log2 machine in
standard ASM

notation

Log2 machine in
Kiama

Java and The Java Virtual
Machine (JBOOK).

• It defines ASM definitions of the semantics
of the Java language, the compiler and the
JVM.

• It mathematically proves that the execution
of the semantics ASM and the JVM ASM is
equivalent.

The
rules use pattern (left hand side of ->)

matching on concrete syntax.
The := symbol updates a state with the

right hand side value

This Java inline
condition matches
with these set of

rules

• This is just mathematical notation of an ASM, it is not
executable.

• We want to be able to write Scala code as close as
possible to notation (to reduce translation effort) and
execute it in computers.

The JBOOK’s ASM
definition to execute
the semantics of the
imperative core Java

expressions

Our Scala/
Kiama code

The JBOOK’s ASM
definition to execute
the semantics of the
imperative core JVM

expressions

Our Scala/
Kiama code

The JBOOK’s
definition of the
compiler for the

imperative core Java

Our Scala/
Kiama code

• Scala has many features which allow us to closely
replicate the JBOOK ASM definitions.

• Case classes

• Pattern matching

• Extractor pattern

• Implicit functions

• Functional programming

• Kiama provides basic execution model and definition of
states.

Next Step
• Develop a library based on the techniques that

we’ve used in this study.

• —> the techniques can be reused.

• —> ASM definitions may be directly written using
Kiama/Scala.

• Try using the concrete syntax in pattern matching,
instead of using syntax tree (case classes)

Fin

