I I I I
/ N O ONSS S AN\

NS /\/w/ﬁ/ﬁ W
\ / N 7\ /\I \I/\
|

N N 7

7~ 7

Try hard! |
y ha d _ NSNS
Proof automation with monads | |
Yutaka Nagashima | Software Systems Research Group 7N

The Sydney Area Programming Languages Interest Group
(SAPLING) in November 2015

WWW.CSIiro.au @

Conclusions first “QATA @

| am developing a proof automation tool for Isabelle/HOL.
| am using monads for this.

* It can discharge some proof obligations that Isabelle’s
default automation tools cannot prove.

2 Try hard! Proof automation with monads. | Yutaka Nagashima

l I I I I I I
NN\ N NN \

| | || | N %I

NS AN\ 7 /\/\/\/

"NANNN O NSONSNS SN NN SNN\

7~ INNSN NSNS AN\

NN NN N\

Demo 1

Isabelle/HOL 101 in 3 minutes

Try the “try” command

Tactics 1 “2aTA
| /I L
Case 1 Case 2
¥ & new goal no subgoal J

Case 4

[the same goal with error message J

4 Try hard! Proof automation with monads. | Yutaka Nagashima

Tactics 2

=

g @J

-
Ly >

principle of explosmn

o)))
g

l
Case 1 Case 2
(new goaIJ imp -
Case 3
(subgoal 1} imp>[subgoal 2 J imp)00 O imp>{ goal J

5 Try hard! Proof automation with monads. | Yutaka Nagashima

Tactics 3 ﬁm @

oo (s :})| thm

Case 1 Case 2
[new goal] imp . , ,

Case 3

[subgoal 1] imp >[subgoal 2 J '

Tactics 3 ﬁm @

)) o))

Case 4 (failure = empty list)

Jljoe]

7 Try hard! Proof automation with monads. | Yutaka Nagashima

Tactics 4) @
~N 7

(goal ’ thmJ taqtic? S;I (goal 1::thm J, (goal 2 :: thmJ, .]

fun tactic :: thm -> [thm |
type tactic = thm -> [thm]

& ‘
fail §)> succegd)

You can add |
- hew tactics |

8 Try hard! Proof automation with monads. | Yutaka Nagashima

Tactical type tactic = thm -> [thm] |§1ATA | @
N~

fun REPEAT :: tactic -> tactic

| generic |
- factic? |

fun THEN :: tactic -> tactic -> tactic

9 Try hard! Proof automation with monads. | Yutaka Nagashima

Tactics 5 Y o

problem:
default tactics need to be tweaked type tactic = t
manually. induet?

- proof default tacti | tweaked
([goal ..thm], [ContextJ y | tactic) creator (tactic -
tactic as data structure ? P

datatype tac =
datatype atom_tac = prim_tac | para_tac At};f’)n atom tac
datatype prim_tac = datatype para_tac = | Succeed B
Simp Para_Simp | Eail
| Clarsimp | Para_Clarsimp | Then (tac * tac)
| Fastforce | Para_Fastforce | Or (tac * tac)
| Induct | Para_Induct | Rep tac:

10 Try hard! Proof automation with monads. | Yutaka Nagashima

Monadic interpretation 1 o | @)
type tactic = thm ->[thm]

tactic / tactical monad operator
succeed tactic \ goal -> return goal
THEN tactic -> tactic -> tactic >=>
fail tactic \ goal -> mzero
OR ? tactic -> tactic -> tactic mplus ?
APPEND tactic -> tactic -> tactic mplus

((tactic1 OR tactic2) THEN tactic3) goal = ?
datatype ‘a tactic = (‘a -> ‘a monadOplus)

11 Try hard! Proof automation with monads. | Yutaka Nagashima

Monadic interpretation 2 Y O

datatype tac =
Atom atom_tac
| Succeed
| Fail
fun inter :: tac -> ‘a -> ‘a monadOplus | Seq (tac * tac)
fun inter (Atom atom) goal = eval atom goal | Or (tac * tac)
| inter Succeed goal = return goal | Rep tac;
| inter Fail _ =mzero
| inter (tac1 Seq tac2) goal = bind (inter tac1 goal) (inter tac2)
| inter (tac1 Or tac2) goal = mplus (inter tac1 goal, inter tac2 goal)
| inter (Rep tac) goal = inter ((tac Seq (Rep tac)) Or Succeed) goal

12 Try hard! Proof automation with monads. | Yutaka Nagashima

Tactics 6) @
~N 7

problems:
1. Poor feedback
2. Slow proof-check

() G [(n))]

type ‘a writerList = (‘a List) writerT

type tactic = thm -> thm writerList

13 Try hard! Proof automation with monads. | Yutaka Nagashima

Second Try:

Future work 5¢TA D

* In the near future ...
e more parameterised atomic

methods

* counterexample finder and
ATPs

e configuration flag for multiple * In the distant future ...
proof-obligations * lemma-suggestion

* pretty printing of apply-script e try hard -> try smart

* Eisbach — quantifier

* evaluation — assertion tactic

e static analysis — proof-plan

— timeout
— how to parametrise methods

15 Try hard! Proof automation with monads. | Yutaka Nagashima

Conclusions again D | O

| am developing a proof automation tool for Isabelle/HOL.
| am using monads for this.

* It can discharge proof obligation that Isabelle’s default
automation tools cannot prove.

16 Try hard! Proof automation with monads. | Yutaka Nagashima

Selected References @m @
~

* Wadler, P. How to Replace Failure by a List of Successes

* Martin, A., and Gibbons, J. A monadic interpretation of tactics.

« Martin, A. P., Gardiner, P. H. B., and Woodcock, J. A tactic calculus

 Dreyer, D., Harper, R., Chakravarty, M. M. T., and Keller, G. Modular type classes.
* Kiselyov, O. et al Backtracking, Interleaving, and Terminating Monad Transformers

17 Try hard! Proof automation with monads. | Yutaka Nagashima

| | | |
N O ONSS S AN\

NS AN NNN N

[N
\ / N /\I/ I/\I \l/\

N N 7

Thank You g

SSRG/ProofEngineering I |
Yutaka Nagashima NN

Research Assistant I I

email
7~ N

WWW.CSIiro.au @

mailto:firstname.surname@nicta.com.au

