
www.csiro.au

Try hard!
Proof automation with monads
Yutaka Nagashima | Software Systems Research Group
The Sydney Area Programming Languages Interest Group
(SAPLING) in November 2015

Try hard! Proof automation with monads. | Yutaka Nagashima2

• I am developing a proof automation tool for Isabelle/HOL.
• I am using monads for this.
• It can discharge some proof obligations that Isabelle’s

default automation tools cannot prove.

Conclusions first

First Try:
Demo 1
Isabelle/HOL 101 in 3 minutes

Try the “try” command

Try hard! Proof automation with monads. | Yutaka Nagashima

Tactics 1

4

goal subgoal 1 subgoal 2 subgoal n

Case 3

new goal

Case 1

the same goal with error message

Case 4

no subgoal

Case 2

tactic

Try hard! Proof automation with monads. | Yutaka Nagashima

Tactics 2

5

preprocesgoal

Case 2

goal

goal goalimp

subgoal 1

Case 3

imp subgoal 2 goalimpimp
tactic

new goal

Case 1

imp goal

False Pimp

principle of explosion

Try hard! Proof automation with monads. | Yutaka Nagashima

[], ,
Tactics 3

6

tactic

preprocesgoal

new goal

Case 1

imp goal

Case 2

goal

goal goalimp

Case 3

imp subgoal 2 goalimpimpsubgoal 1

: thm

Try hard! Proof automation with monads. | Yutaka Nagashima

[]
Tactics 3

7

tactic

preprocesgoal

Case 4 (failure = empty list)

goal goalimp

Try hard! Proof automation with monads. | Yutaka Nagashima

Tactics 4

8

fun tactic :: thm -> [thm]
type tactic = thm -> [thm]

[, ,…]tacticgoal :: thm goal 1:: thm goal 2 :: thm

inductsimp

succeedfail

auto

Lazy

You can add
new tactics

Try hard! Proof automation with monads. | Yutaka Nagashima

Tactical

9

fun OR :: tactic -> tactic -> tactic

simp autoOR

type tactic = thm -> [thm]

THENinduct auto

fun THEN :: tactic -> tactic -> tactic

REPEAT simp

fun REPEAT :: tactic -> tactic

generic
tactic?

Try hard! Proof automation with monads. | Yutaka Nagashima

Tactics 5

10

problem:
 default tactics need to be tweaked
 manually.

(, ,) ()goal :: thm proof
context

default
tactic

tweaked
tactic

tactic
creator?
 datatype tac =
 Atom atom_tac
 | Succeed
 | Fail
 | Then (tac * tac)
 | Or (tac * tac)
 | Rep tac;

:-(tactic as data structure ?
datatype atom_tac = prim_tac | para_tac
datatype prim_tac =
 Simp
 | Clarsimp
 | Fastforce
 | Induct

datatype para_tac =
 Para_Simp
 | Para_Clarsimp
 | Para_Fastforce
 | Para_Induct

type tactic = thm -> [thm]?induct?

Try hard! Proof automation with monads. | Yutaka Nagashima

tactic / tactical type monad operator

succeed tactic \ goal -> return goal

THEN tactic -> tactic -> tactic >=>

fail tactic \ goal -> mzero

OR ? tactic -> tactic -> tactic mplus ?

APPEND tactic -> tactic -> tactic mplus

11

Monadic interpretation 1
type tactic = thm -> [thm]

((tactic1 OR tactic2) THEN tactic3) goal = ?
datatype ‘a tactic = (‘a -> ‘a monad0plus)

Try hard! Proof automation with monads. | Yutaka Nagashima12

 fun inter :: tac -> ‘a -> ‘a monad0plus
 fun inter (Atom atom) goal = eval atom goal
 | inter Succeed goal = return goal
 | inter Fail _ = mzero
 | inter (tac1 Seq tac2) goal = bind (inter tac1 goal) (inter tac2)
 | inter (tac1 Or tac2) goal = mplus (inter tac1 goal, inter tac2 goal)
 | inter (Rep tac) goal = inter ((tac Seq (Rep tac)) Or Succeed) goal

Monadic interpretation 2
 datatype tac =
 Atom atom_tac
 | Succeed
 | Fail
 | Seq (tac * tac)
 | Or (tac * tac)
 | Rep tac;

Slow !

Try hard! Proof automation with monads. | Yutaka Nagashima

problems:
1. Poor feedback
2. Slow proof-check

Tactics 6

13

tactic() goal [(,),…]goal 1log 1

type tactic = thm -> thm writerList
type ‘a writerList = (‘a List) writerT

Second Try:
Demo 2
Try the “try_hard” method

Try hard! Proof automation with monads. | Yutaka Nagashima

Future work

• In the near future …
• more parameterised atomic

methods
• counterexample finder and

ATPs
• configuration flag for multiple

proof-obligations
• pretty printing of apply-script
• Eisbach
• evaluation
• static analysis

• In the distant future …
• lemma-suggestion
• try hard -> try smart
– quantifier
– assertion tactic
– proof-plan
– timeout
– how to parametrise methods

15

Try hard! Proof automation with monads. | Yutaka Nagashima16

• I am developing a proof automation tool for Isabelle/HOL.
• I am using monads for this.
• It can discharge proof obligation that Isabelle’s default

automation tools cannot prove.

Conclusions again

Try hard! Proof automation with monads. | Yutaka Nagashima17

• Wadler, P. How to Replace Failure by a List of Successes
• Martin, A., and Gibbons, J. A monadic interpretation of tactics.
• Martin, A. P., Gardiner, P. H. B., and Woodcock, J. A tactic calculus
• Dreyer, D., Harper, R., Chakravarty, M. M. T., and Keller, G. Modular type classes.
• Kiselyov, O. et al Backtracking, Interleaving, and Terminating Monad Transformers

Selected References

www.csiro.au

Thank You
SSRG/ProofEngineering
Yutaka Nagashima  
Research Assistant
email firstname.surname@nicta.com.au

mailto:firstname.surname@nicta.com.au

