The Prospects for Programming-Experience Design

Gary Miller University of Technology, Sydney

Towards <u>a theory</u> of Programming Language Design

When is comes to computation we are all disabled !

HUMAN COMPUTER INTERACTION, 1985, Volume 1, pp. 209-242 Copyright © 1985, Lawrence Erlbaum Associates, Inc.

The Prospects for Psychological Science in Human-Computer Interaction

Allen Newell Carnegie-Mellon University

Stuart K. Card Xerox Palo Alto Research Center

HUMAN COMPUTER INTERACTION, 1985, Volume 1, pp. 209-242 Copyright © 1985, Lawrence Erlbaum Associates, Inc.

The Prospects for Psychological Science in Human-Computer Interaction

Gresham's Law: Hard Science Drives Out Soft.

There is Nothing so Useful as a Good Theory.

Good Studies of the Interface Yield Theories, Not Facts.

Psychological Research Best Affects Design by Providing the Designer Tools for Thought.

The Race is Between the Tortoise of Cumulative Science and the Hare of Intuitive Design.

i su	mwis	se		fee	dback							Welcon	ne mille	.garym WIE Lo	2.015
File - I	Edit = T n)7(1+(On	ools -					_								
Model	0			24						D					
									month, actual	month, foreicaet	nonth, forecast			month, forecast	
	• I •		8	Essumptions	Growth	COGS	8	Q1	Jan	Feb	Mar	Ē	Q2	Acr	New c
	Global				10.0%										
18	Revenu	e													
	Hardv	ware							10	2 3	11	11		11	
cow -	Softw	are			15.0%				12	1	14	16		18	
ater	Consi	ulting			5.0%				5		6	6		6	
uther _	Servic	ciers			12.0%				9		10	11		13	
	Total	2							30		40	- 44		48	
	Expense	15				00.004					10	10		10	
	Other	ware.				10.0%			-		3	30		10	
	Total					10.071	1		11		13	13		14	- 1
	Profit								25		28	31		34	
- A	New row			1						2	77.			0.72	-
0 B	ath -	п	A. RUR	evenue Children) C	(Storecast)				* =10mm	45-115/1+0G	rowth1)				
8	×	ñ	f. PIDe	unnue Coffware [7]	01 Febl				-/lanler	t+/Greath)	Differing (10
5 4	+	5	A DIDA	untrue Hauthaner	101 Eahl				-[]ao]#	A+10iaba010	IT diseases				1.1
1 4	Ŧ	2	4 DUD	venue.narowareju	(druep)				-[340]-[=[rau]_(1+[ckopa(](ckowp)])					- X. I
Se .		5	AND RUN	evenue.consurbing	[C[/Q1.Heb]				=[ran]-(=[Jan]*(1+R[/Global)C[/Assumptions.Growth])					- 11
		E	IL R[]C	I/Assumptions.Chi	idren]										24
		C	IL R[/C	hildren.Children] C	(Bactual)										6
		7	for R[/R	evenue.Total] C[@	month]				=Sum(R	[Siblings])					- 4
		п	A. pf.m.	voenzer ("hildren) ("I.Réneraet1		_		-CD as not	an ThicleInno	061				1

-	A	8	с	D	Ē	F	G	н	1	J	ĸ	L	M	N	ō									
1	Input:	3	3	5	4	5	5	8	9	9	4	4	1											
2 3	Output:	15	5 27	18			A	B	C out R	log	ion	E	F	G	Halcula	l	J Regi	K	L	м				
-			-	-	- 4	2		x	Y	1	í.	z		1	10	10	10	0						
F	igure 2:	The	e cr	itic	1	3		z	z		-	A	В	c	D	E	F	G	н	1	J	к	L	M
pi	toblem is unbers	Her	com	he	14	1		Y	Z		1		10	4	7	14								
al	out each	oth	er,	and	1 1	5	_				2		12	7	3	87			Cor	ntinue	e sor	ting	block	(s
ez	ich block	4				en la		- 20	-		3		45	10	5	12								
					1	solution f	nbe ptic	er o on i n co	f Xi s to	s, r	Fite	gur rn o lun	e 7 of d	: So lata and	rt-bl bloc l con	ocks ks. sist	. Th Here of th	ne p e, ti	he bl	em i locks	is to s are s.	sor ari	t a j rayed	pat- l in

Display-based problems in spreadsheets: a critical incident and a design remedy. Hendry, D.G., 1995.

Problem – Repetition

Tasks	Est.	Mon	Tues	Wed
Task 1	10	6	ł.	
Task 2	9		6	
Task 3	8			
Remaining	27	23	17	17

Mon	Tues	Wed
6	6	6
9	3	3
8	8	8
23	17	17

Problem – Repetition

Tasks	Est.	Mon	Tues	Wed		Mon	Tues	Wed
Task 1	10					I MI		
Task 2	9		3	9	3	3		
Task 3	8			8	8	8		
Remaining	27	23	17 17	23	17	17		

Mon	Tues	Wed
=IF(ISBLANK(H9),IF(ISBLANK(K9),G9,K9),H9)	=IF(ISBLANK(I9),IF(ISBLANK(L9),H9,L9),I9)	=IF(ISBLANK(J9),IF(ISBLANK(M9),I9,M9),J9)
=IF(ISBLANK(H10),IF(ISBLANK(K10),G10,K10),H10)	=IF(ISBLANK(I10),IF(ISBLANK(L10),H10,L10),I10)	=IF(ISBLANK(J10),IF(ISBLANK(M10),I10,M10),J10)
=IF(ISBLANK(H11), IF(ISBLANK(K11), G11, K11), H11)	=IF(ISBLANK(I11),IF(ISBLANK(L11),H11,L11),I11)	=IF(ISBLANK(J11),IF(ISBLANK(M11),I11,M11),J11)
=SUM(L9:L11)	=SUM(M9:M11)	=SUM(N9:N11)

F	ri	Mon	Tues
	=IF(ISBLANK(RC[-5]),IF	-(ISBLANK(RC[-1]),RC[-	6],RC[-1]),RC[-5])
-	=SUM(R[-3]C:R[-1]C)	SUM(R[-3]C:R[-1]C)	=SUM(R[-3]C:R[-1]C)

Problem – Description

- Sum
- Carry over
- Group
- Inputs

Solutions

inp	ut	Est	day Mon	day Tues	day Wed
task	Task 1	10	6		
task	Task 2	9		3	
task	Task 3	8			
	Remaining	27	23	17	17

Calc	day Mon	day Tues	day Wed	
task	6	6	6	
task	9	3	3	
task	8	8	8	
total	23	17	17	

1.Expanding Nodes
2.Atticus Operator

Expanding Nodes

Cell Groups Enable separation of data and logic

Inp	ut	Est	day Mon	day Tues	day Wed
task	Task 1	10	6		
task	Task 2	9		3	
task	Task 3	8			
	Remaining	27	23	17	17

Calc	day Mon	day Tues	day Wed
task	6	6	6
task	9	3	3
task	8	8	8
total	23	17	17

Atticus Operator

Inp	ut	Est	day Mon	day Tues	day Wed
task	Task 1	10	6		
task	Task 2	9			
task	Task 3	8			
	Remaining	27	23	17	17

[task] => C[Est:0] #NonBlank.#Last | #Sum

Potential Theoretical Models

- ? Mental models, Cognitive fit
- ? Concept maps
- ? Hierarchical Bayesian Models of Cognition
- ? Ideal student (from intelligent tutoring systems)

Theories

- (PLP)Power Law of Practice
- (ZPD) Zone of Proximal Development
- (ICA) Innate cognitive abilities
- (CAL) Capturing Abstractions in Language

HUMAN COMPUTER INTERACTION, 1985, Volume 1, pp. 209-242 Copyright © 1985, Lawrence Erlbaum Associates, Inc.

The Prospects for Psychological Science in Human-Computer Interaction

Good Studies of the Interface Yield Theories, Not Facts.

Phase	New Program Development	Neistonance ¹	Adaptive Reintenance ²	Naintenance ³
Problem Flaming/Analysis				
Program Design				
Coding			\bigcirc	
Desting/Debugging				
Occumentation				
Implementation/Delivery				

TABLE I FRAMEWORK FOR ANALYSIS OF RESEARCH LEVELS OF ARSTRACTION TABLE I

Notes: 1. Correction of logic errors in released programs.

Alterations carried out to most danged program specifications.
Alterations to improve resource consumption efficiency.

Test vectors

Expanding Nodes

- =IF(ISBLANK(RC[-4]), IF(ISBLANK(RC[-1]), RC[-5], RC[-1]), RC[-4])v1 5enontic
- =IF(ISBLANK(C[-4]),IF(ISBLANK(C[-1]),C[-5],C[-1]),C[-4]) v2
- \vee 3 =Last(NonBlank(C[-5,-1,-4]))
- v4 =C[-5,-1,-4].#NonBlank.#Last

Atticus Operator

- =SUM(R[-3]C:R[-1]C => Last(NonBlank(RC7:RC))) v1
- $\vee 2 = SUM(CR[-3]:CR[-1] = Last(NonBlank(C7R:CR)))$
- \vee 3 =SUM(CR[-3:-1] => Last(NonBlank(C[\$7:0]R)))
- $\vee 4 = SUM(R[-3:-1] = Last(NonBlank(C[$7:0])))$
- v5 =Sum([task] => Last(NonBlank(C[Est:0])))
- =[task] => C[Est:0].#NonBlank.#Last | #Sum v6 |

	the second second	A	- 8	C	0		1			
			-	tag1	tag1	_				
	1		Alpha	ha		Delta				
		1-		Beta; tag1	Gamma; tag1					
	2	One and				1	1			
	3 1964	Three tag?			1	1				
	5 142	Fourt tag2			* ·					
	6	Fiet	1		1					
Valid EXCEL			Potent	ial experime	nts.					
Intersect Columns & Rows	=COUNTISC	SD \$3:551	Abonhu	to index	-00	UNT	IC-013-51	1		
Intersect Bours & Columns	=COUNT(\$3:\$5 \$C:\$D)		Balash	Relative & Attcus			=COUNT(A1[0][-3] => :A1[+1][+3])			
Intersect nows & columns			resativ							
Range by corners	=COUNT(\$C	\$3:\$D\$5)	A1 & A	ttous	+CO	UNT(C3 => [0]]	0]:C[+1]R[+2])		
			A1 & A	ttous	=CO	UNT([Beta][Tw	o] => [0][0]:C[+1]R[+2])		
Intersect Columns & Rows	=COUNT{C:I	D 3:5)	Name		+CO	UNT	[tag1]]tag	2])		
Intersect Rows & Columns	=COUNT(3:5 C:D)		Name	Name explicit row column =			=COUNT(Citag1)Ritag2[]			
Range by corners	ange by corners =COUNT(C3:D5)		Name	Name range			=COUNT([Beta:Gamma][Two:Four])			
and a second second		1000	Name	range - explic	t row colu =CO	UNT	C[Beta:Ga	mma[R[Two:Four])		
Intersect Columns & Rows	=COUNT(R3	:R5 C2:C3)	Name	range - altern	ate row c =CO	UNT	(SC Beta:	Gamma][\$R[Two:Four]]		
Intersect Rows & Columns	=COUNT(C2	:C3 R3:R5)	Hierard	thy	+CO	UNT	[Alpha.@	Children][One.@Children])		
Range by corners	=COUNT(R2	C2:R4C3)	Hierard	thy - explict n	ow colum =CO	UNT	C[Alpha.@	Children ROne (Children)		
-			Concat	ative	=[C:	01[3-	SIRCOUNT			

Hypotheses Comparable Models

Hypotheses Comparable Models

Potential Theoretical Models

- ? Mental models, Cognitive fit
- ? Concept maps
- ? Hierarchical Bayesian Models of Cognition
- ? Ideal student (from intelligent tutoring systems)

Hypotheses

- Testable Models of Language (PLP)
- Abstraction gradient (ZPD)
- Natural ordering of language, Spatial navigability, Numeracy (ICA)
- Language evolution = pattern capture (AL)
- Orthogonality, Motivation etc. (other)

Hypotheses Comparable Models

••

Parameter Estimates and Correlation Coefficient for

the Twenty-One Rules in the Cognitive Model

	pL0	рТ	pG	pS	r
Section 1					
Code Car	0.53	1.00	0.00	0.03	0.91
Section 4					
Code Defun	0.80	0.99	0.10	0.05	0.73
Declare Function Name	0.86	0.44	0.04	0.07	0.54

Hypothesis -Testable Models of Language (PLP)

Hypothesis – Natural ordering

Hypothesis – Natural ordering

Language is the medium through which thoughts are communicated. Our abstractions should be solid from a distance but permeable up close

"One language's patterns are the next ones features"

Richard Helm Sydney Design Patterns SIG '96

References

Anderson, J.R., 2000. Cognitive psychology and its implications . fifth edit., WH Freeman/Times Books/Henry Holt & Co.

Corbett, A.T. & Anderson, J.R., 1993. Student modeling in an intelligent programming tutor. In Cognitive models and intelligent environments for learning programming. Springer, pp. 135–144.

Vessey, I. & Weber, R., 1984. Research on structured programming: An empiricist's evaluation. Software Engineering, IEEE Transactions on, (4), pp. 397–407.

Display-based problems in spreadsheets: a critical incident and a design remedy. Hendry, D.G., 1995.

The Prospects for Programming-Experience Design

Questions?

Towards <u>a theory</u> of Programming Language Design