WEB BROWSERS AS COMPILERS

SCOTT BUCKLEY

MACQUARIE UNIVERSITY

buck.ly/sapling15

	Compiler	Browser
Input	Source code (+libraries?)	HTML (+stylesheets?)
Parsing	Source code → AST	HTML → DOM
Annotation (Translation) (Transformation)	Semantic Analysis (into core language?) (optimisation?)	CSS Layout (build render tree?) (DOM manipulation?)
Output	Code generation	Rendering

WHAT IS CSS?

"User agents are not required to present HTML documents in any particular way."

The HTML spec.

"In general, user agents [...] support CSS."

The HTML spec.

CSS formats HTML documents.

HOW DOES CSS WORK?

- HTML → DOM (tree)
- Many properties per node (e.g. padding or width)
- Some specified by author (via stylesheets)
- Rest are calculated
- Properties evaluated in stages
- Final values dictate layout

LAYOUT

"[T]he computed value resolves the specified value as far as possible without laying out the document or performing other [difficult] operations, such as [...] retrieving values other than from the element and its parent."

"The used value is the result of [...] completing any remaining calculations to [the final] value used in the layout of the document."

The CSS spec.

AKA COMPUTED \rightarrow USED

LAYOUT IS CALCULATION FROM CONTEXT.

WHAT IS SEMANTIC ANALYSIS?

- Infers information about AST nodes.
- Links related nodes (variable use + declaration).
- Finds semantic errors, such as type mismatches.
- Is about recognising relationships between elements.
- Uses an element's larger context to infer about it.

SEMANTIC ANALYSIS

Finds errors (etc), by

- Understanding context
- Resolving dependencies

LAYOUT

Calculates positions, by

- Understanding context
- Resolving dependencies

For **Semantic Analysis**, we use *Attribute Grammars*, which allow us to annotate AST nodes in a context-sensitive way.

Layout requires resolving dependencies on a tree. This is the same problem as Semantic Analysis.

So why don't we use Attribute Grammars for Layout?

WHAT ARE ATTRIBUTE GRAMMARS?

Traditionally, AGs are relational formulae attached to CFG production rules.

Generally, AGs are formulae for relational calculations on trees.

Attribute Grammars annotate tree nodes, using context.

ATTRIBUTE GRAMMARS FOR LAYOUT

A PARTIALLY DECORATED TREE

APPLY DEFAULTS AND RENDER

AN ATTRIBUTE FOR Y-POS

```
div.y = root: 0
    first: parent.y
    else: prev.y + prev.height
```


AND PADDING

```
div.y = root: 0
    first: parent.y + PAD
        else: prev.y + prev.height + PAD

div.x = root: 0
    else: parent.x + PAD

div.w = root: 100
    else: parent.w - PAD×2
```


WHY USE ATTRIBUTE GRAMMARS?

- They suit the problem.
- They are succinct.
- They are well-researched.
- They can be optimised (externally).

CHALLENGES

- Some subproblems don't fit so nicely into the AG schema.
- A direct implementation will not run as fast as existing browsers.
- Interaction with DOM manipulation may pose challenges.*

QUESTIONS?