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Disclaimer

The following is intended to provide some insight into a line of 
research in Oracle Labs. It is intended for information purposes only, 
and may not be incorporated into any contract. It is not a commitment 
to deliver any material, code, or functionality, and should not be relied 
upon in making purchasing decisions. Oracle reserves the right to alter 
its development plans and practices at any time, and the 
development, release, and timing of any features or functionality 
described in connection with any Oracle product or service remains at 
the sole discretion of Oracle.  Any views expressed in this presentation 
are my own and do not necessarily reflect the views of Oracle.
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Goal: Java Security Analysis

• Automated security analysis for Java JDK™

– Java Secure Coding Guidelines

• Find security bugs at development time before they are exploited

Untrusted 
Code

Permission 
Check

Security 
Sensitive 
Entities

Sufficient Privileges

Trusted Code

4



Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

How to statically analyze?
● Points-to analysis fundamental to analyzing Java code
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# OpenJDK7-b147

Variables 1.5M

Invocations 629K

Object creation sites 193K

Methods 171K

Classes 17K

Jython

275K

121K

48K

28K

3558

Scale 
points-to analysis 

to 
large java library



Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

Background
Context-insensitive, 
flow-insensitive 
Anderson’s style points-to 
for Java
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  a:x=new Foo()

  y=x;

  if (cond) {
    z = y; 
  } else { 
    b:z=new G();

    z.f = y;

  }

Points-To Example
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Challenges and solutions

1
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Library analysis

● Type information based analysis

Scaling context sensitive points-to 

● Demand-driven slicing

Implementation optimizations
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Amalgamate Points-To with Type Abstraction
Assume creation-site A and B create instances of class X
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Creation-site A Creation-site B

Object 1 Object 2 Object 3 Object 4
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class A {
 public B f1;
 private C f2; } 

class B extends A { 
 public A f3;
 private A f4 ; }

class C { 
 public A f5; } 

Heap Abstraction for Most General Application (MGA)
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Example
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Context Sensitive Points-To for JDK

Even on OpenJDK7-b147 without Swing does not Scale. Times out (>1day)!

- Soufflé on Intel Xeon E5-2660 (2.2GHz) 256GB

Demand driven Analysis
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Demand driven analysis

Context-insensitive
Points-to

Client
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Results
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Experiment on OpenJDK7-b147 without Swing
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• A Client derived from Java Secure Coding Guidelines

– Identify program points of interest

Before Slicing After Slicing

Variables 1.3M 233K

Object creation sites 182K 35K

Using Soufflé
On Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz 32GB

20m 26G 8 cores



Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

Implementation Optimizations

15



Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

Optimizations for Soufflé
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• Oracle Labs Datalog Engine

– Efficient indexing

• Leveraging indexing in Soufflé

– Reordering atoms

– Manual Query planning
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Reordering atoms
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PotentialCallToExternalOverridableMethod(heaptype, callsite) :-

   VarPointsTo(heap, base),

   ExternalHeapAllocation(heap),

   OptVirtualMethodInvocationBase(callsite, base),

   HeapAllocationType(heap, heaptype).
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Results of Implementation Optimizations
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Before

OpenJDK7-b147 without Swing 20m 26G

Full OpenJDK7-b147 Timeout

After

12m 17G

78m 255G

Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30 GHz, 396G using 8 cores
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Conclusion
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● Library analysis 
– Type information based analysis

● Scaling Context Sensitive Points-to 
– Demand-driven for Client

● Implementation Optimizations

Scaling Points-to to JDK is possible



Copyright © 2015 Oracle and/or its affiliates. All rights reserved.


	Slide 1
	Disclaimer
	Slide 3
	Motivation for Large-Scale Points-To Analysis
	Slide 5
	Background
	Points-To Example
	Slide 8
	Amalgamate Points-To with Type Analysis
	Example: Initial State
	Slide 12
	Architecture
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

