

Copyright © 2015 Oracle and/or its affiliates. All rights reserved. 2

Disclaimer

The following is intended to provide some insight into a line of
research in Oracle Labs. It is intended for information purposes only,
and may not be incorporated into any contract. It is not a commitment
to deliver any material, code, or functionality, and should not be relied
upon in making purchasing decisions. Oracle reserves the right to alter
its development plans and practices at any time, and the
development, release, and timing of any features or functionality
described in connection with any Oracle product or service remains at
the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

Scaling Points-to to large Java Libraries
Challenges and Solutions

Raghavendra Kagalavadi
Postdoctoral Researcher,

Joint work with Paddy Krishnan, Bernhard Scholz, Yi Lu, Behnaz Hassanshahi

Oracle Labs, Brisbane
November, 2015

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

Goal: Java Security Analysis

• Automated security analysis for Java JDK™

– Java Secure Coding Guidelines

• Find security bugs at development time before they are exploited

Untrusted
Code

Permission
Check

Security
Sensitive
Entities

Sufficient Privileges

Trusted Code

4

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

How to statically analyze?
● Points-to analysis fundamental to analyzing Java code

5

OpenJDK7-b147

Variables 1.5M

Invocations 629K

Object creation sites 193K

Methods 171K

Classes 17K

Jython

275K

121K

48K

28K

3558

Scale
points-to analysis

to
large java library

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

Background
Context-insensitive,
flow-insensitive
Anderson’s style points-to
for Java

6

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

 a:x=new Foo()

 y=x;

 if (cond) {
 z = y;
 } else {
 b:z=new G();

 z.f = y;

 }

Points-To Example

x

y

z

a

b

f

Variables

Object-creation sites

vP

hP

7

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

Challenges and solutions

1

2

Library analysis

● Type information based analysis

Scaling context sensitive points-to

● Demand-driven slicing

Implementation optimizations

8

3

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

Amalgamate Points-To with Type Abstraction
Assume creation-site A and B create instances of class X

9

Creation-site A Creation-site B

Object 1 Object 2 Object 3 Object 4

f

f

Abstract Domain

Concrete Domain

Class Xf
Coarse-
grained

Fine-
grained

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

class A {
 public B f1;
 private C f2; }

class B extends A {
 public A f3;
 private A f4 ; }

class C {
 public A f5; }

Heap Abstraction for Most General Application (MGA)

A

B

C

f1

f1 f3

f5

10

Example

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

Context Sensitive Points-To for JDK

Even on OpenJDK7-b147 without Swing does not Scale. Times out (>1day)!

- Soufflé on Intel Xeon E5-2660 (2.2GHz) 256GB

Demand driven Analysis

12

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

Demand driven analysis

Context-insensitive
Points-to

Client

JDK Slicing

Sliced JDK
Context-sensitive

Points-to
Security
Analysis

Results

13

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

Experiment on OpenJDK7-b147 without Swing

14

• A Client derived from Java Secure Coding Guidelines

– Identify program points of interest

Before Slicing After Slicing

Variables 1.3M 233K

Object creation sites 182K 35K

Using Soufflé
On Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz 32GB

20m 26G 8 cores

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

Implementation Optimizations

15

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

Optimizations for Soufflé

16

• Oracle Labs Datalog Engine

– Efficient indexing

• Leveraging indexing in Soufflé

– Reordering atoms

– Manual Query planning

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

Reordering atoms

17

PotentialCallToExternalOverridableMethod(heaptype, callsite) :-

 VarPointsTo(heap, base),

 ExternalHeapAllocation(heap),

 OptVirtualMethodInvocationBase(callsite, base),

 HeapAllocationType(heap, heaptype).

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

Results of Implementation Optimizations

18

Before

OpenJDK7-b147 without Swing 20m 26G

Full OpenJDK7-b147 Timeout

After

12m 17G

78m 255G

Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30 GHz, 396G using 8 cores

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

Conclusion

19

● Library analysis
– Type information based analysis

● Scaling Context Sensitive Points-to
– Demand-driven for Client

● Implementation Optimizations

Scaling Points-to to JDK is possible

Copyright © 2015 Oracle and/or its affiliates. All rights reserved.

	Slide 1
	Disclaimer
	Slide 3
	Motivation for Large-Scale Points-To Analysis
	Slide 5
	Background
	Points-To Example
	Slide 8
	Amalgamate Points-To with Type Analysis
	Example: Initial State
	Slide 12
	Architecture
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

