
Evaluating Kiama Abstract State Machines 
for a Java Implementation

by
Pongsak Suvanpong, Anthony M. Sloane

Abstract 

This study evaluates the Abstract State Machines (ASM) component in 
Kiama. ASM is a formal method for specifying a system using the state 
machine concept (state-based). The specification of a model is done 
using the ASM notations with a clear and precise programming 
language constructs. There are number of tools for specifying and 
executing ASM models in computer. They are implemented as 
programming languages or modifying an existing programming 
language to support ASM execution model.

Kiama is a lightweight language processing library in Scala. It provides 
classes for language processing paradigms such as attribute 
grammars, strategic term rewriting and Abstract State Machines (ASM) 
which can be used for analyzing, translating and executing languages. 
Most of the components in Kiama have been evaluated and tested in 
number of case studies except the ASM component. 

To evaluate Kiama ASM, we implement several complex ASM for 
executing the dynamic semantics of the Java language and the JVM. 
We use the book Java and the Java Virtual Machine: Definition, 
Verification and Validation by R. Stärk, J. Schmid and E. Börger, as our 
reference. The book has developed the formal ASM models for the 
dynamic semantics of the Java language and the Java Virtual 
Machines. The aim of our study is to closely replicate the machine 
definitions described in the book.

We are able to implement the machines without any modifications to 
Kiama's ASM. The combination of Scala and Kiama allows us to 
closely replicate the book’s ASM notations in executable code. The 
transition rules in our code map one-to-one to the rules in the JBOOK. 
The techniques that we use to accomplish are Scala pattern matching, 
implicit functions and extractor patterns. The Kiama ASM library 
provides us with the ASM execution model and state.

The significance of this study is one can take ASM mathematical 
definitions and code them up in Scala to execute them and be able to 
use the code in an application development. We believe that the 
techniques that we have used to accomplish the goals in this study can 
be applied to other applications of ASM.


