
Try hard! Proof automation, efficient-proof-script reconstruction, and
proof-planning in Isabelle using monads.

Yutaka Nagashima∗

Software Systems Research Group at NICTA

The reliability of critical software systems is essential; even though
people’s lives are becoming more and more dependent on software
systems, a number of security-critical software faults are being dis-
covered.

Type safe languages and static analysis tools are employed to elimi-
nate bugs statically and automatically. However, most of these tech-
niques are inadequate to assure that implementations are function-
ally correct in terms of their specifications. They only assure the
lack of certain bugs, but they do not guarantee functional correct-
ness.

There is only one known way to guarantee functional correctness
of software artefacts rigorously; specify the desired behaviour for-
mally and mechanically, and prove that the implementation respects
the specification using a theorem prover such as Isabelle, Coq, or
HOL4.

This approach is known as complete formal verification. The seL4
micro-kernel, the C compiler CompCert, and the ML compiler
CakeML are major achievements in this field; they are proved to
be correct mechanically. These projects have demonstrated that
complete formal verification is possible and, to some extent, cost-
effective. However, complete formal verification of small software
project still requires significant effort.

Many proof automation tools have been developed to alleviate the
cost of verification. Most interactive theorem provers come with de-
fault proof-procedures called tactics. Despite the support of these
tools, interactive theorem proving is still considered as a hard prob-
lem requiring experienced engineers.

We believe that there is still significant room to improve proof au-
tomation in interactive theorem provers. In this talk, we present
our new proof automation tools for Isabelle which produce efficient
proof-scripts if they successfully discharge given proof-obligations.
Our automation tools are fully embedded in Isabelle, enabling the
seamless invocation from Isabelle/jEdit, the standard proof-editor
of Isabelle.

Furthermore, we present our framework for proof automation. This
framework allows Isabelle users to specify their own proof-search
procedures succinctly as data structures.

”Succinctly” is the keyword here; our monadic interpretation of tac-
tics makes our framework compositional and abstract the core of
framework away from the implementation details. Isabelle’s source
language, ML, does not support type classes natively. Therefore,
we emulate type classes to implement monads using the ML mod-
ule system.

∗NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and
the Australian Research Council.

This ongoing work has already demonstrated that our approach
successfully discharges a set of small-scale proof-obligations that
could not be proved by the existing proof-automation tools in Is-
abelle. Finally, we explain our plan to improve our automation
tools and framework, so that our approach can solve larger-scale
proof-obligations.

Keywords: interactive theorem proving, proof automation, proof-
reconstruction, monadic-interpretation, tactic-language

References

DIXON, L., AND FLEURIOT, J. D. 2003. Isaplanner: A prototype
proof planner in isabelle. In Automated Deduction - CADE-19,
19th International Conference on Automated Deduction Miami
Beach, FL, USA, July 28 - August 2, 2003, Proceedings, 279–
283.

DREYER, D., HARPER, R., CHAKRAVARTY, M. M. T., AND
KELLER, G. 2007. Modular type classes. In Proceedings of
the 34th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2007, Nice, France, January
17-19, 2007, 63–70.

KLEIN, G., ANDRONICK, J., ELPHINSTONE, K., HEISER, G.,
COCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K.,
KOLANSKI, R., NORRISH, M., SEWELL, T., TUCH, H., AND
WINWOOD, S. 2010. sel4: formal verification of an operating-
system kernel. Commun. ACM 53, 6, 107–115.

KUMAR, R., MYREEN, M. O., NORRISH, M., AND OWENS, S.
2014. Cakeml: a verified implementation of ML. In The 41st An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014, 179–192.

LEROY, X. 2009. A formally verified compiler back-end. Journal
of Automated Reasoning 43, 4, 363–446.

MARTIN, A., AND GIBBONS, J., 2002. A monadic interpretation
of tactics.

MARTIN, A. P., GARDINER, P. H. B., AND WOODCOCK, J. 1996.
A tactic calculus-abridged version. Formal Asp. Comput. 8, 4,
479–489.

PAULSON, L. C. 1994. Isabelle - A Generic Theorem Prover (with
a contribution by T. Nipkow), vol. 828 of Lecture Notes in Com-
puter Science. Springer.

SLIND, K., AND NORRISH, M. 2008. A brief overview of HOL4.
In Theorem Proving in Higher Order Logics, 21st International
Conference, TPHOLs 2008, Montreal, Canada, August 18-21,
2008. Proceedings, 28–32.


