
Understanding Concurrent Programs using
Rely-Guarantee Thinking

∗

Ian J. Hayes, Larissa Meinicke, Robert Colvin, Kim Solin, Kirsten Winter

School of ITEE, University of Queensland, Australia

The rely-guarantee approach (developed in the 80s by Cliff Jones) is one of
the first to provide compositional reasoning about concurrent programs. As a
result one can reason about single threads individually when reasoning about
a parallel program. Since rely-guarantee reasoning can handle fine-grained and
non-blocking synchronisation a resurgence of interest in the approach can be
observed.

Our focus is on the design of concurrent algorithms using a stepwise refine-
ment from an abstract specification down to code. The refinement steps are
driven by a set of rules collected in a refinement calculus. Our work builds
largely on Carroll Morgan’s refinement calculus for sequential programs which
we extended (and adapted) by rules that allow the designer to introduce parallel
behaviour in a refinement step. To do this we make use of the notions of rely and
guarantee conditions in order to constrain the (allowable) interference between
threads.

Our refinement calculus of rely-guarantee refinement for concurrent programs
is presented algebraically, i.e., by algebraic rules in which rely and guarantee
conditions are generalised to processes. This leads to surprisingly simple and
elegant proofs. The rules of our calculus are mechanically proven to be correct
using the Isabelle/HOL theorem prover.

The calculus makes use of a wide-spectrum language which is general enough
to capture not only safety properties but also progress properties of the overall
behaviour of a concurrent program (e.g., necessary when developing lock-free
algorithms). Another possible (future) application is the development of con-
current algorithms in the light of a specific weak (software or hardware) mem-
ory model. That is, a normal specification of the algorithm could be enhanced
by replacing the normal sequential execution of each thread’s code by a non-
deterministic choice over the possible (i.e., enabled) next steps to capture opti-
mising code re-orderings (undertaken by the compiler) like e.g., done in the Java
Memory Model (JMM). Weak hardware memory models on the other hand, can
be captured by adding buffers, fences and flushes into the specification to deter-
mine where interference renders fences and flushes necessary in the concurrent
algorithm.

∗
This work is supported by Australian Research Council (ARC) Discovery Project
DP130102901.


