
Efficient Implementation of A Verification-
Friendly Programming Language

Min-Hsien (Sam) Weng

Supervised by
Associate Professor Bernhard Pfahringer
Associate Professor Mark Utting

Reliable Software
● Software in modern life is anywhere and anytime. So are bugs!!!

● Two approaches to improve software quality

○ Testing

■ After production testing, the program still has 5-10 bugs per 1000

line-of-code. [Watts S. Humphrey]

■ Software complexity increases the numbers of bugs.

○ Software Verification / Static Program Analysis

Whiley
● Whiley is a new programming language with extended static checking to

○ Detect errors (12/0?, a[100], null dereference) at compile-time

○ Produce a program with as few errors as possible

● Whiley has the advantages of hybrid imperative and functional
programming language:

○ Value Semantics

○ Side-effect Free Function / Referential Transparency

● We choose Whiley as the front-end of this project.

Problems about Whiley
➔ Arbitrary-sized Whiley integers/data structures avoid integer overflows but

result in poor performance.
◆ Bound analysis finds the lower and upper bounds for each program

variable
◆ Bound analysis determines “where” and “what” fixed-sized integers

and data structures are used.

➔ Extra value copying problem arises from the use of immutable values but
increases memory overhead (lowers the efficiency)
◆ Reference counting can reduce the copying at runtime.
◆ Pointer-to-alias analysis or unique types of Clean can reduce value

copying statically.

Research Questions
Can a verification-friendly Programming Language be implemented efficiently?

a. Can abstract interpretation be used to infer static bounds (integer

ranges, data structure sizes and pointer analysis to avoid copying

data) for Whiley programs?

b. Can we automatically identify which parts of programs can be

parallelized?

Whiley-to-OpenCL Translator

Whiley-to-OpenCL Backend
● WyIL Interpreter

● Whiley-to-OpenCL Translator
○ Proof Obligation Generator

○ Bound Analyzer

○ OpenCL Code Generator

Note blue solid boxes are being developed

and yellow dashed boxes will soon be

implemented in this project.

.

Whiley program

WyIL Code

WyIL
Interpreter

OpenCL
code

Execution Result

Proof
obligation
Generator

Bound
Analyzer

OpenCL
Code
Generator

Whiley
Verifier

SMT
Solver

Whiley-to-OpenCL Translator
● OpenCL/C code generator converts WyIL code into efficient OpenCL code

a. Use bound analyzer to find fixed-size integer types/data structures and to reduce the
number of data copying.

b. If the bound analyzer fails,

i. proof obligation generator produces the proof obligations (validated by Whiley
checker and SMT solver (Z3)), or

ii. gives the warning/error messages to programmers for assistants, e.g. stronger
assertion and invariants.

● The goal of translator is to implement a large subset of Whiley in
C/OpenCL, with parallelism where possible/useful.

f.0 [const %2 = 10 : int]

f.1 [ifge %0, %2 goto blklab0 : int]

f.2 [const %3 = 1 : int]

f.3 [return %3 : int]

f.4 [.blklab0]

f.5 [const %5 = 10 : int]

f.6 [ifle %0, %5 goto blklab2 : int]

f.7 [const %6 = 2 : int]

f.8 [return %6 : int]

f.9 [.blklab2]

f.10 [.blklab1]

f.11 [const %7 = 0 : int]

f.12 [return %7 : int]

Step #1
Compiling the Whiley Program into WyIL Code

function f(int x) => int:
if x < 10:

 return 1
else:

 if x > 10:
 return 2

return 0

%i : ith register

Step #2
Extracting Constraints and Building the Control Flow Graph

f.0 [const %2 = 10 : int]

f.1 [ifge %0, %2 goto blklab0 : int]

f.2 [const %3 = 1 : int]

f.3 [return %3 : int]

f.4 [.blklab0]

f.5 [const %5 = 10 : int]

f.6 [ifle %0, %5 goto blklab2 : int]

f.7 [const %6 = 2 : int]

f.8 [return %6 : int]

f.9 [.blklab2]

f.10 [.blklab1]

f.11 [const %7 = 0 : int]

f.12 [return %7 : int]

%i: ith register
return: return value

C1: %0 >= %2
C2: %5 := 10

C1: %0 < %2
C2: %3 := 1
C3: return := %3

Entry

C3: %0 > %5
C4: %6 := 2
C5: return := %6

C3: %0 <= %5a

Exit C4: %7 := 0
C5: return := %7

C0: %2 := 10

Step #3
Inferring the bounds

B0: { D(%0)=[-inf..inf] }
B1: B0 ∪ { D(%2)=[10..10] }
B2: B1 ∪ { D(%0)=[-inf..9]

D(%3)=[1..1]
D(return)=[1..1]}

B3: B1 ∪ { D(%0)=[10..inf]
D(%5)=[10..10]}

B4: B3 ∪ { D(%0)=[11..inf]
D(%6)=[2..2]
D(return)=[2..2] }

B5: B3 ∪ { D(%0)=[-inf..10]}
B6: B5 ∪ { D(%7)=[0..0]

D(return)=[0..0]}

C1: %0 >= %2
C2: %5 := 10

C1: %0 < %2
C2: %3 := 1
C3: return := %3

Entry

C3: %0 > %5
C4: %6 := 2
C5: return := %6

C3: %0 <= %5

Exit C4: %7 := 0
C5: return := %7

C0: %2 := 10

B0

B1

B2 B3

B4
B5

B6

Step #4
Inferring Bounds for Function Result

B7 : B2 ∪ B4 ∪ B6=
{ D(return) = [1..1] ∪ [2..2] ∪ [0..0]
 = [0..2]
}

C1: %0 >= %2
C2: %5 := 10

C1: %0 < %2
C2: %3 := 1
C3: return := %3

Entry

C3: %0 > %5
C4: %6 := 2
C5: return := %6

C3: %0 <= %5

Exit C4: %7 := 0
C5: return := %7

C0: %2 := 10

B2

B4

B6

Loops and Fixpoints

● CFG example of a while loop

● Must iterate the bound inference to find a
fixpoint.

● Using the widening operator to converge
to the fixpoint quickly.

Loop Header

Loop Body

Loop Exit

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools,
chapter 8, pages 529–531. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1986.

….

Widening Operator

Fixpoint

Widening bounds
to (+/-) infinity

Loop
function f() => int

int i = 0
int sum = 0
while i <= 1,000,000:

 sum = sum + i
 i=i+1

return sum

Entry

Exit

C0: i=0
C1: sum=0

Loop Body:
C0: i<= 1,000,000
C1: sum=sum+i
C2: i=i+1

Loop Exit:
C0: i > 1,000,000
C1: return sum

Loop Header

B : {D(i) = [0.. 1,000,001]
 D(sum) = [0.. ∞] }
sum ~= 500 billion

Multi-level Widening Operator
● Infinity is too imprecise.

● Actual ranges, defined in the compiler, could be used in widening

operator.

● Multi-level widening operator widens the lower and upper bounds against a

number of thresholds (actual ranges of data types).

Threshold Values
Threshold Description Values

INF_MIN Negative Infinity -∞

_I64_MIN Min of long long Integer -9,223,372,036,854,775,808

INT_MIN Min of int Integer -2,147,483,648

SHRT_MIN Min of short Integer -32,768

SHRT_MAX Max of short Integer 32,767

INT_MAX Max of int Integer 2,147,483,647

_I64_MAX Max of long long Integer 9,223,372,036,854,775,807

INF_MAX Positive Infinity ∞

Future work
● Generate efficient C code using the Bound analysis

○ Investigate Su + Wagner’s bound analysis without widening operator, or
Campos et al.’s LLVM range analysis algorithm.

● Infer bounds for data structure sizes

○ Use the fixed-size arrays in C code

● Reduce the copying of data structures

This project will improve performance and scalability of Whiley programs while
maintaining program correctness.

Thank You!!!

