
There is no such thing
as a free lunch
please excuse the inflammatory title

theorem

Parametricity

Gives us a number of free theorems about
parametrically polymorphic functions in the second
order lambda calculus

Type Classes

Create functions which are not parametrically
polymorphic so parametricity says nothing about
such functions

Unbounded Recursion

Reduces the number of theorems we can get for free
in a known way. Theorems for Free!.

Philip Wadler.
FPCA, New York, New York, USA 1989 pp. 347-359.

Haskell’s Seq

Reduces the number of theorems we can get for free
in a known way. Theorems for Free!.

Philip Wadler.
FPCA, New York, New York, USA 1989 pp. 347-359.

Type-Indexed Functions

Kill parametricity dead for the whole language
Everyone you talk to about Type Indexed Functions

Functions which can make a decision based on the
type of an argument.

So what’s with the title?

Type indexed functions are valuable. Thus keeping
parametricity costs us our valuable feature. In fact,
parametricity only works in systems where the type
system is very conservative with parametric
polymorphism.

A safe but non-parametric
function

incOrElse n :: Int = n + 1

incOrElse c :: Char = char ((ord c) + 1)

incOrElse o = o

Be generous with syntax
please, squint your eyes
and think, “what could
this mean in a Haskell-

ish language?”

Nothing can go wrong with incOrElse if we give it the
type

incOrElse n :: Int = n + 1

incOrElse c :: Char = char ((ord c) + 1)

incOrElse o = o

8↵.↵ ! ↵

Except, that is, for the theorems we got from
parametricity.

So a conservative type system is a necessary cost of
parametricity

That’s it?

So I have described a problem, you hope I have
more than this right?

The solution
Give incOrElse some other type - not 8↵.↵ ! ↵

As long as the type I give it is compatible with 8↵.↵ ! ↵

Suggestion

8↵.↵ ! ↵ ⌘ 8↵ 2 { }.↵ ! ↵

The types α can be

The unknown type

When a function is polymorphic over the unknown
type, it is parametrically polymorphic.

Suggestion

When a function is polymorphic over more than the
unknown type, it is not parametrically polymorphic.

incOrElse n :: Int = n +1

incOrElse c :: Char = char ((ord c) + 1)

incOrElse o = o

8↵ 2 { , Int,Char}.↵ ! ↵

Future Work

(2) Type Inference for such a type system

(1) Proof it does not break parametricity in the whole
language

Why I think (1) is true

The parametric arguments are always dispatched in
the theorem, e.g. a . tail = tail . (map a)

The set of types clearly identifies which functions
are candidates to have theorems written about them

Why I think (2) is true

It feels like it will work

I have drawn inference outlines and it seems to
work

