Reflecting on the Design of
Whiley

David J. Pearce

School of Engineering and Computer Science
Victoria University of Wellington

dWhileyDave
http://whiley.org
http://github.com/Whiley

@WhileyDave
http://whiley.org
http://github.com/Whiley

Background

Verification: A Challenge for Computer Science

“A verifying compiler uses automated mathematical and
logical reasoning methods to check the correctness of the
programs that it compiles”

—Hoare’03

Verification: An ldea for the Future?

function indexOf ([int] items, int item) => (int|null i)

// If return is an int 1, then items[r] == item

ensures 1 1is int ==> 1tems[1] == item

// If return is null, then no element x in items where x == item

ensures i is null ==> no { x in items | x == item }

// If return is an int i, then no index j where j < i and items[j] == item

ensures 1 is int ==> no { J in 0..1 | 1tems[]] == 1tem }:
//

@ Can we turn documentation into code?

@ Can we statically check that it is correct and clients adhere to it?

@ And, if we can do these things ... is it useful?

Overview

People (so far)

B
|/

Melby . Matt
Daniel
(built GPGPU backend, (compiling for a QuadCopter,
(built C backend, 2012) (helping with WhileyWeb)
2013) 2014)

Sam . Mark
Lindsay
(started PhD on (A/Prof, University of
(improving verification, 2014) (A/Prof, Victoria University)

Parallelisation, 2014) Waikato)

Verification: Overview

function abs(int x) => (int 1)
ensures r >= 0:
if x >= 0:
return x

else:
return —x

@ To verify above function, compiler generates verification
conditions

@ Verification conditions are (roughly) first-order logic formulas

Verification: Example

if x >= 0

! !

return X J [return -Xx

x>=0 — x>=0 x<) —-x>=0

Demo

Teaching Whiley ...

In 2014, Trimester 2 ...
@ Whiley used in SWEN224 “Formal Foundations of Software”
@ SWENZ224 covers reasoning about programs using Hoare Logic
@ About 120 students enrolled in SWEN224

@ Whiley helped with teaching pre-/post-conditions and loop
invariants

Observations: Simple Examples went Well

Needed lots of simple examples like this ...

type Change is { int twentyCents, int fiftyCents }
function getChange (int fiveDollars) => (Change r):

// REQUIRES: one or more fiveDollar Notes to turn into change
// ENSURES: Total return should match the amount given

@ Part 1) Translate pre-/post-conditions into Whiley.

@ Part 2) Give an appropriate implementation.

The Water Jugs Example

type State is { nat small, nat medium }
where small <= SMALL_SIZE && medium <= MEDIUM_SIZE

function pourSmall2Medium(State jugs) => (State r):
int amount = MEDIUM_SIZE - jugs.medium
//

if amount > jugs.small: /emptying small jug

Jugs.medium = Jjugs.medium + Jjugs.small
Jugs.small = amount

else: // filling up medium jug
Jugs.medium = MEDIUM_SIZE
Jugs.small = jugs.small — amount

return jugs

@ Question): Provide post-condition to ensure water isn’t lost.
Does the implementation meet this specification?

Observations: Loop Invariants are Hard

Here’s a “simple” loop invariant example ...

function add([int] xs, int x) => ([int] ret)
ensures |ret| == |Xs]|:
int 1 = 0
int ghostVar = |xs|
while 1 < |xs|:
Xs[i1] = xs[i1i] + X

1=1 + 1
return xs

@ Question) Add loop invariant so above will verify ...

Observations: Error Messages are Important!

In particular, Students need to Debug their Code

function max(int x, int y) => (int r)
ensures r >= X && r >= vy && (r == x || r == y):
if x > y:
return x
else:
return 0

@ The error message “Postcondition not satisfied” isn’'t helpful!

@ Students need to narrow down which part isn’t satisfied...

Whiley on Embedded Systems ...

BitCraze Crazyfly QuadCopter:

@ ARM Cortex STM32F103CB @ 72 MHz (128kb flash, 20kb RAM)
@ 3-axis MEMs gyros and 3-axis accelerometer
@ Operating System is FreeRTOS, with Applications on Top

The Project:

@ Construct Whiley-to-C Translator
@ Port several modules (e.g. for stabilisation) to Whiley
@ Go “full circle” by generating C from Whiley code and integrating

Observations: Memory is Tight!

With only 20Kb of RAM ...
@ Need to stack allocate as much as possible
@ In CrazyFlie code, structures on stack & pointers passed down
@ Whiley does support references, but no “address of” operator

function £ () :
[int] alist = [1,2, 3]
int x = g(&alList)

function g(&[int] list):

@ Whiley’'s value semantics does not help here.
@ Need flow analysis to determine list size (i.e. because of append)

Observations: Integration is Tricky!

Whiley does include an FFl...

native function cFun(int x, int y) => int

export function whileyFun (int x) => int.:
return x + 1

@ FFI| consists of two keywords: export and native

@ With native, can prototype C functions in Whiley

@ With export, can make Whiley functions accessible to C
@ Marshalling data across boundaries is then the problem

Observations: Global Variables!

Existing Crazyflie code uses global variables...

@ ... to communicate between concurrent tasks (one writer, many
readers)

@ Whiley does not support global variables!

@ Then, how to integrate with existing RTOS ... ?

@ Answer: Easy, write globals in C and access via FFI!

Conclusions

@ Need better support for stack allocated objects...
... €.g. some Kkind of object lifetime system (like Rust)

@ Need flow analyses to bound width of integer variables ...
... and compound variables (e.g. lists)

@ Need support for global variables ... really ??

@ Need much better error messages...

http://whiley.org

dWhileyDave
http://github.com/DavePearce/Whiley

http://whiley.org
@WhileyDave
http://github.com/DavePearce/Whiley

