
Reflecting on the Design of
Whiley

David J. Pearce

School of Engineering and Computer Science
Victoria University of Wellington

@WhileyDave
http://whiley.org

http://github.com/Whiley

@WhileyDave
http://whiley.org
http://github.com/Whiley

Background

Verification: A Challenge for Computer Science

“A verifying compiler uses automated mathematical and
logical reasoning methods to check the correctness of the
programs that it compiles”

–Hoare’03

Verification: An Idea for the Future?

function indexOf([int] items, int item) => (int|null i)

// If return is an int r, then items[r] == item
ensures i is int ==> items[i] == item

// If return is null, then no element x in items where x == item
ensures i is null ==> no { x in items | x == item }

// If return is an int i, then no index j where j < i and items[j] == item
ensures i is int ==> no { j in 0..i | items[j] == item }:

//
...

Can we turn documentation into code?

Can we statically check that it is correct and clients adhere to it?

And, if we can do these things ... is it useful?

Overview

People (so far)

Art
(built C backend, 2012)

Melby
(built GPGPU backend,

2013)

Daniel
(helping with WhileyWeb)

Matt
(compiling for a QuadCopter,

2014)

Henry
(improving verification, 2014)

Sam
(started PhD on

Parallelisation, 2014)

Lindsay
(A/Prof, Victoria University)

Mark
(A/Prof, University of

Waikato)

Verification: Overview

function abs(int x) => (int r)

// return value cannot be negative
ensures r >= 0:

//
if x >= 0:

return x

else:
return -x

To verify above function, compiler generates verification
conditions

Verification conditions are (roughly) first-order logic formulas

Verification: Example

Demo

Teaching Whiley ...

In 2014, Trimester 2 ...

Whiley used in SWEN224 “Formal Foundations of Software”

SWEN224 covers reasoning about programs using Hoare Logic

About 120 students enrolled in SWEN224

Whiley helped with teaching pre-/post-conditions and loop
invariants

Observations: Simple Examples went Well

Needed lots of simple examples like this ...

type Change is { int twentyCents, int fiftyCents }

function getChange(int fiveDollars) => (Change r):

// REQUIRES: one or more fiveDollar Notes to turn into change
// ENSURES: Total return should match the amount given

...

Part 1) Translate pre-/post-conditions into Whiley.

Part 2) Give an appropriate implementation.

The Water Jugs Example

type State is { nat small, nat medium }

where small <= SMALL_SIZE && medium <= MEDIUM_SIZE

function pourSmall2Medium(State jugs) => (State r):

int amount = MEDIUM_SIZE - jugs.medium

//
if amount > jugs.small: // emptying small jug

jugs.medium = jugs.medium + jugs.small

jugs.small = amount

else: // filling up medium jug
jugs.medium = MEDIUM_SIZE

jugs.small = jugs.small - amount

return jugs

Question): Provide post-condition to ensure water isn’t lost.
Does the implementation meet this specification?

Observations: Loop Invariants are Hard

Here’s a “simple” loop invariant example ...

function add([int] xs, int x) => ([int] ret)

// Return value is same size as parameter
ensures |ret| == |xs|:

//
int i = 0

int ghostVar = |xs|

while i < |xs|:

xs[i] = xs[i] + x

i=i + 1

return xs

Question) Add loop invariant so above will verify ...

Observations: Error Messages are Important!

In particular, Students need to Debug their Code

function max(int x, int y) => (int r)

ensures r >= x && r >= y && (r == x || r == y):

//
if x > y:

return x

else:
return 0

The error message “Postcondition not satisfied” isn’t helpful!

Students need to narrow down which part isn’t satisfied...

Whiley on Embedded Systems ...

BitCraze Crazyfly QuadCopter:

ARM Cortex STM32F103CB @ 72 MHz (128kb flash, 20kb RAM)
3-axis MEMs gyros and 3-axis accelerometer
Operating System is FreeRTOS, with Applications on Top

The Project:

Construct Whiley-to-C Translator
Port several modules (e.g. for stabilisation) to Whiley
Go “full circle” by generating C from Whiley code and integrating

Observations: Memory is Tight!

With only 20Kb of RAM ...
Need to stack allocate as much as possible
In CrazyFlie code, structures on stack & pointers passed down
Whiley does support references, but no “address of” operator

function f():

[int] aList = [1,2,3]

int x = g(&aList)

...

function g(&[int] list):

...

Whiley’s value semantics does not help here.
Need flow analysis to determine list size (i.e. because of append)

Observations: Integration is Tricky!

Whiley does include an FFI...

native function cFun(int x, int y) => int

export function whileyFun(int x) => int:
return x + 1

FFI consists of two keywords: export and native

With native, can prototype C functions in Whiley

With export, can make Whiley functions accessible to C

Marshalling data across boundaries is then the problem

Observations: Global Variables!

Existing Crazyflie code uses global variables...

... to communicate between concurrent tasks (one writer, many
readers)

Whiley does not support global variables!

Then, how to integrate with existing RTOS ... ?

Answer: Easy, write globals in C and access via FFI!

Conclusions

Need better support for stack allocated objects...

... e.g. some kind of object lifetime system (like Rust)

Need flow analyses to bound width of integer variables ...

... and compound variables (e.g. lists)

Need support for global variables ... really ??

Need much better error messages...

http://whiley.org

@WhileyDave
http://github.com/DavePearce/Whiley

http://whiley.org
@WhileyDave
http://github.com/DavePearce/Whiley

