
Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Scalable Context-Sensitive Points-To Analysis

Nicholas Allen
Bernhard Scholz
Paddy Krishnan

Oracle Labs
Brisbane, Australia

1

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Disclaimer

The following is intended to provide some insight into a line of research in
Oracle Labs. It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making purchasing
decisions. Oracle reserves the right to alter its development plans and
practices at any time, and the development, release, and timing of any
features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this
presentation are my own and do not necessarily reflect the views of Oracle.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Motivation

• Principal aim: Security analysis of JDK

• Security analysis: Flow of objects through the program

–Objects created by untrusted code may not flow to a security sensitive operation

– Sensitive objects may not escape to untrusted code

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Solution

• Value Flow Analysis

• Points-to analysis: Objects a variable may reference

– Result of value flow analysis

• Points-to analysis: Security analysis

– Taint: Variable in trusted code points to object created by untrusted code

– Escape: Object created by trusted code pointed to by variable in untrusted code

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Points-To: Choices

• Context-insensitive

– Not sufficiently precise: Numerous false positives

• Context-sensitive

– Numerous choices: callsite, receiver/allocator object

– 2-Object+1-Heap: Does not scale for JDK

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Problem Size: Open JDK7-b147

• 1.3 Million variables

• 200,000 methods

• 600,000 potential invocations

• 400,000 object creation sites

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Intel Xeon E5-2660 (2.2GHz) 256GB RAM, Using DOOP and the LogicBlox Engine

Points-To: Open JDK7-b147

Analysis Time Size of Result/Outcome

Context-Insensitive 20 minutes ≈ 1 Gigatuples

1-Callsite-Sensitive 20 hours Does not terminate

1-Object-Sensitive 20 hours Does not terminate

2-Heap+1-Object 20 hours Runs out of memory

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Constraining Problem Space

• Computing points-to information not the ultimate goal

– Client analysis needs points-to information to answer a query

– Potential queries: Call-graph, Escape, Null, Taint

• Solution: Demand-driven analysis
–Only compute information required to answer the query

Motivation: Security

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Approach

• Static program slicing and compaction

– Client’s queries as starting point

• Compute points-to in stages

– Refinement approach

• Reduce program to semantically equivalent for points-to queries

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Architecture

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Slicing/Refinement

• Slicing using variables of interest

– Very cheap and imprecise (no points-to), removes variables

– Context-insensitive points-to computed on this slice

• Slicing using context-insensitive points-to information
–More expensive but also more effective

– Removes variables and object creation sites

• Context-sensitive points-to analysis

– Computes final result

Three Steps

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Step 1

• Client identifies required variables

• Over-approximated call graph based on class hierarchy analysis (CHA)

• Sound/Imprecise backwards value-flow trace from the required variables

• Variables not involved in the value-flow trace removed

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Step 2

• Context-insensitive points-to is computed

• Backwards trace from required points-to locations

– Similar to step 1

– Points-to provides more precise call graph and value-flow information

– Variables and heap objects not involved in the trace removed

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Example
class SecurityApplication {

 private static void doSecurity(SecurityObject secObj1,

 SecurityObject secObj2) {

 SecurityAction action1 = new SecurityAction();

 SecurityAction action2 = new SecurityAction();

 action1.object = secObj1;

 action2.object = secObj2;

 Object res1 = action1.invoke();

 Object res2 = action2.invoke();

 doOtherThings(res1, res2);

 }

Any call to invoke with an
untrusted object field?

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Example: Backward Slice
class SecurityApplication {

 private static void doSecurity(SecurityObject secObj1,

 SecurityObject secObj2) {

 SecurityAction action1 = new SecurityAction();

 SecurityAction action2 = new SecurityAction();

 action1.object = secObj1;

 action2.object = secObj2;

 Object res1 = action1.invoke();

 Object res2 = action2.invoke();

 doOtherThings(res1, res2);

 }

Any call to invoke with
an untrusted field?

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Example: Caller of Relevant Methods

class SecurityApplication {

 public static void main(String[] args) {

 String result = setup(args);

 System.out.println(result);

 SecurityFactory uFactory = new UntrustedSecurityFactory();

 SecurityFactory tFactory = new TrustedSecurityFactory();

 SecurityObject uObject = uFactory.getSecurityObject();

 SecurityObject tObject = tFactory.getSecurityObject();

 doSecurity(uObject, tObject);

 }

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Example: Slicing Callers

class SecurityApplication {

 public static void main(String[] args) {

 String result = setup(args);

 System.out.println(result);

 SecurityFactory uFactory = new UntrustedSecurityFactory();

 SecurityFactory tFactory = new TrustedSecurityFactory();

 SecurityObject uObject = uFactory.getSecurityObject();

 SecurityObject tObject = tFactory.getSecurityObject();

 doSecurity(uObject, tObject);

 }

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Example: Propagate Slicing Information
class SecurityApplication {

 private static void doSecurity(SecurityObject secObj1,

 SecurityObject secObj2) {

 SecurityAction action1 = new SecurityAction();

 SecurityAction action2 = new SecurityAction();

 action1.object = secObj1;

 action2.object = secObj2;

 Object res1 = action1.invoke();

 Object res2 = action2.invoke();

 doOtherThings(res1, res2);

 }

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Final Slice

class SecurityApplication {

 public static void main() {

 SecurityFactory uFactory = new UntrustedSecurityFactory();

 SecurityObject uObject = uFactory.getSecurityObject();

 doSecurity(uObject);

 }

 private static void doSecurity(SecurityObject secObj1) {

 SecurityAction action1 = new SecurityAction();

 action1.object = secObj1;

 Object res1 = action1.invoke();

 }

}

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Experimental Results

20

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Experiment: OpenJDK 7-b147

• Clients derived from Java Secure Coding Guidelines
– Caller Sensitive Methods (e.g., Class.forName())

– AccessController.doPrivileged()

– Identify locations of interest

– Combine with Escape and Taint analysis

• Aim: To compute context-sensitive points-to for these clients

– Security analysis beyond the scope of this work

Using the DOOP Framework and the LogicBlox Engine

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Experiment: Clients

• Four clients chosen for experimentation

1. Caller-sensitive-methods with tainted input, and escaping values

2. Caller-sensitive-methods with only tainted input

3. Caller-sensitive-methods with only escaping values

4. AccessController.doPrivileged()with tainted inputs

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Results
Reduction in Number of Variables

1278523

799484

266558

0

200000

400000

600000

800000

1000000

1200000

1400000

Initial After Slicing After CI Analysis

Client1

Client2

Client3

Client4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Results
Reduction in Number of Object Creation-Sites

494560

28298 0

100000

200000

300000

400000

500000

600000

Initial After CI Analysis

Client1

Client2

Client3

Client4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Other Results

Context-Insensitive Context Sensitive Context-Sensitive
(Without Contexts)

Size of Points-To 120 Million 430 Million 2 Million

Objects per
Variable

140 - 8

Call-graph Edges 330,000 80 Million 145,000

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Intel Xeon E5-2660 (2.2GHz) 256GB RAM

Runtime

Stage Average Time

Variable Slicing 5 minutes

Context-Insensitive Analysis/Slicing 37 minutes

2-Heap+1-Object Analysis 3 hrs 53 minutes

Total 4 hrs 35 minutes

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Scalable Context-Sensitive Points-To Analysis
Demand-Driven, Slicing/Compaction Approach

27

Questions?

