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GPUs

• Lots of raw computing power


- This one: 2688 cores @ 867 MHz

• Different hardware design


- Limited instruction set


- SIMD: Cores run the same program, but on different data

• How can we take advantage of this power?

With a high-level embedded language of course!
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#include <accelerate_cuda.h>
typedef DIM1 DimOut;
extern "C" __global__ void zipWith
(
    const DIM1 shIn0,
    const Int64* __restrict__ arrIn0_a0,
    const DIM1 shIn1,
    const Int64* __restrict__ arrIn1_a0,
    const DIM1 shOut,
    Int64* __restrict__ arrOut_a0
)
{
    const int shapeSize = size(shOut);
    const int gridSize = blockDim.x * gridDim.x;
    int ix;

    for (ix = blockDim.x * blockIdx.x + threadIdx.x; ix < shapeSize; ix += gridSize) {
        const DimOut sh = fromIndex(shOut, ix);
        const int v0 = toIndex(shIn0, shape(sh));
        const int v1 = toIndex(shIn1, shape(sh));

        arrOut_a0[ix] = arrIn0_a0[v0] * arrIn1_a0[v1];
    }
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#include <accelerate_cuda.h>
typedef DIM1 DimOut;
extern "C" __global__ void zipWith
(
    const DIM1 shIn0,
    const Int64* __restrict__ arrIn0_a0,
    const DIM1 shIn1,
    const Int64* __restrict__ arrIn1_a0,
    const DIM1 shOut,
    Int64* __restrict__ arrOut_a0
)
{
    const int shapeSize = size(shOut);
    const int gridSize = blockDim.x * gridDim.x;
    int ix;

    for (ix = blockDim.x * blockIdx.x + threadIdx.x; ix < shapeSize; ix += gridSize) {
        const DimOut sh = fromIndex(shOut, ix);
        const int v0 = toIndex(shIn0, shape(sh));
        const int v1 = toIndex(shIn1, shape(sh));

        arrOut_a0[ix] = arrIn0_a0[v0] * arrIn1_a0[v1];
    }

        }
    }
    sdata0[threadIdx.x] = y0;
    __syncthreads();
    ix = min(shapeSize - blockIdx.x * blockDim.x, blockDim.x);
    if (threadIdx.x + 512 < ix) {
        x0 = sdata0[threadIdx.x + 512];
        y0 = y0 + x0;
        sdata0[threadIdx.x] = y0;
    }
    __syncthreads();
    if (threadIdx.x + 256 < ix) {
        x0 = sdata0[threadIdx.x + 256];
        y0 = y0 + x0;
        sdata0[threadIdx.x] = y0;
    }
    __syncthreads();
    if (threadIdx.x + 128 < ix) {
        x0 = sdata0[threadIdx.x + 128];
        y0 = y0 + x0;
        sdata0[threadIdx.x] = y0;
    }
    __syncthreads();
    if (threadIdx.x + 64 < ix) {
        x0 = sdata0[threadIdx.x + 64];
        y0 = y0 + x0;
        sdata0[threadIdx.x] = y0;
    }
    __syncthreads();
    if (threadIdx.x < 32) {
        if (threadIdx.x + 32 < ix) {
            x0 = sdata0[threadIdx.x + 32];
            y0 = y0 + x0;
            sdata0[threadIdx.x] = y0;
        }
        if (threadIdx.x + 16 < ix) {
            x0 = sdata0[threadIdx.x + 16];
            y0 = y0 + x0;
            sdata0[threadIdx.x] = y0;
        }
        if (threadIdx.x + 8 < ix) {
            x0 = sdata0[threadIdx.x + 8];
            y0 = y0 + x0;
            sdata0[threadIdx.x] = y0;
        }
        if (threadIdx.x + 4 < ix) {
            x0 = sdata0[threadIdx.x + 4];
            y0 = y0 + x0;
            sdata0[threadIdx.x] = y0;
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dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)  
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)
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• A deep embedding

dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)  
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

type Vector e = Array (Z:.Int) e type Scalar e = Array Z e

zipWith :: (Exp a -> Exp b -> Exp c) 
        -> Acc (Array sh a) 
        -> Acc (Array sh b) 
        -> Acc (Array sh c)

fold :: (Exp e -> Exp e -> Exp e) 
     -> Exp e 
     -> Acc (Array (sh:.Int) e) 
     -> Acc (Array sh e)

Accelerate
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Mandelbrot fractal

n-body gravitational simulation

Canny edge detection

stable fluid flow

...
d6b821d937a4170b3c4f8ad93495575d: saitek1
d0e52829bf7962ee0aa90550ffdcccaa: laura1230
494a8204b800c41b2da763f9bbbcc462: lina03
d8ff07c52a95b30800809758f84ce28c: Jenny10
e81bed02faa9892f8360c705241191ae: carmen89
46f7d75718029de99dd81fd907034bc9: mellon22
0dd3c176cf34486ec00b526b6920b782: helena04
9351c4bc8c8ba17b58d5a6a1f839f356: 85548554
9c36c5599f40d08f874559ac824d091a: 585123456
4b4dce6c91b429e8360aa65f97342e90: 5678go
3aa561d4c17d9d58443fc15d10cc86ae: momo55

Recovered 150/1000 (15.00 %) digests in 59.45 s, 185.03 MHash/sec

Password “recovery” (MD5 dictionary attack)
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What’s missing?

• Matrix-vector multiplication.

• In terms of dotp?

mvm :: Acc (Array (Z:.Int:.Int) Float) 
    -> Acc (Vector Float) 
    -> Acc (Vector Float)  
mvm mat vec = generate (index1 (height mat))  
                       (λi -> the (dotp vec (getRow i mat)))

the :: Acc (Scalar e) -> Exp e

Nested parallelism

index1 :: Exp Int -> Exp (Z:.Int)

generate :: Exp sh 
         -> (Exp sh -> Exp e) 
         -> Acc (Array sh e)
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• NESL

• Data Parallel Haskell (DPH)
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The lifting transformation

foo    :: Int -> Float -> Float  

Ln⟦foo⟧ :: Vector Int -> Vector Float -> Vector Float

Ln⟦c⟧     = replicate n c     (Where c is a constant)

Ln⟦x⟧     = replicate n x     (Where x is not a lifted variable)

Ln⟦x⟧     = x                 (Where x is a lifted variable)

Ln⟦e1 e2⟧ = Ln⟦e1⟧ Ln⟦e2⟧  

Ln⟦λx.e⟧  = λx. L(length x)⟦e⟧ 

Ln⟦p⟧     = p↑                 (Where p is a built-in operation and p↑ is the 
lifted equivalent)

The size The expression being transformed
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• Vectors of pointers? Grossly inefficient.

• Blelloch’s solution

1 2 3 4{ , 5 6 7 , 8 }
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Vectors of arrays

1 2 3

4 5 6{ ,
7 8

9 10 , 11 }

1 2 3 4 5 6 7 8 9 10 11( , )(3,2) (2,2) (1,1)

type Vector' = …a vector of arrays…
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Nested Operations Nested Structures

fact n = 
  map (\m -> product [1..m]) [1..n]

Vector (Vector e)

Array DIM2 (Vector e)
MVM

Trees
Sequences
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Sequences

• Sequences of arrays (or tuples of arrays)

• Can only be accessed linearly

• So map, fold and scan, but no permuting, indexing or constant time length

• Like Haskell lists

• Does that mean all the operations have to be made polymorphic over 
sequences and arrays?
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Sequence operations

mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]

toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

fromSeq :: Seq [Array sh e] -> Seq (Vector sh, Vector e)

Elements not always 
the same size

collect :: Arrays a => Seq a -> Acc a

Array or tuple of 
arrays (not a 
sequence)



Sequence operations

mvm mat vec =



Sequence operations

mvm mat vec =mvm mat vec = 

            $ toSeq mat



Sequence operations

mvm mat vec =mvm mat vec = 

            $ toSeq mat

mvm mat vec = 

            
            $ mapSeq (dotp vec)
            $ toSeq mat



Sequence operations

mvm mat vec =mvm mat vec = 

            $ toSeq mat

mvm mat vec = 

            
            $ mapSeq (dotp vec)
            $ toSeq mat

mvm mat vec = 

            $ fromSeq
            $ mapSeq (dotp vec)
            $ toSeq mat



Sequence operations

mvm mat vec =mvm mat vec = 

            $ toSeq mat

mvm mat vec = 

            
            $ mapSeq (dotp vec)
            $ toSeq mat

mvm mat vec = 

            $ fromSeq
            $ mapSeq (dotp vec)
            $ toSeq mat

mvm mat vec = snd
            $ collect
            $ fromSeq
            $ mapSeq (dotp vec)
            $ toSeq mat
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Execution and representation

• Sequentially


- The processing of each element has to expose enough parallelism

• As one large vector


- Use the lifting transform


- Space problems

• Chunk-wise


- Work on many elements in parallel
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1 2 3 4[ , 5 6 7 , 8 9 ]10, 11 12, ,…
mapSeq reverse

4 3 2 1 , 7 6 5 ,[ ]9 8 10, 12 11, ,…
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Reductions

• Ideal

• Basic

• Better

foldSeq :: (Exp a -> Exp a -> Exp a) 
        -> Exp a 
        -> Seq [Scalar a] 
        -> Seq (Scalar a) 

foldSeqFlatten :: (Acc a -> Acc (Vector sh) -> Acc (Vector b) -> Acc a)
               -> Acc a
               -> Seq [Array sh b]
               -> Seq a

The accumulated value

A flattened chunk 

Has to be scalar!

foldSeq :: (Acc a -> Acc a -> Acc a) 
        -> Acc a 
        -> Seq [a] 
        -> Seq (a) 



Chunk size



Chunk size

• What’s the best size?



Chunk size

• What’s the best size?

• A lot of factors involved



Chunk size

• What’s the best size?

• A lot of factors involved

- Number of GPU cores



Chunk size

• What’s the best size?

• A lot of factors involved

- Number of GPU cores

- Available device Memory



Chunk size

• What’s the best size?

• A lot of factors involved

- Number of GPU cores

- Available device Memory

- The computation itself



Chunk size

• What’s the best size?

• A lot of factors involved

- Number of GPU cores

- Available device Memory

- The computation itself

- Space and time analysis of array computations



Chunk size

• What’s the best size?

• A lot of factors involved

- Number of GPU cores

- Available device Memory

- The computation itself

- Space and time analysis of array computations

• Still ongoing work



Streaming

• Sequences allow for working with data sets larger than available GPU 
memory


- A painful experience before


• Streaming operations

streamIn :: Arrays a => [a] -> Seq [a]

streamOut :: Arrays a => Seq [a] -> [a]



Lots more to do

• Regularity


- Sequences where all elements are the same size


• Streaming from different sources


• Stateful operations


- Scans


• Nested sequences



Questions?


