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GPUs

* Lots of raw computing power

- This one: 2688 cores @ 867 MHz

» Different hardware design
- Limited instruction set

- SIMD: Cores run the same program, but on different data

- How can we take advantage of this power?

With a high-level embedded language of course!
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dotp xs ys = fold (+) 0 ( zipWith (*) xs ys )

#include <accelerate cuda.h>
typedef DIM1 DimOut;
extern "C" _ global__ void zipWith

(

const DIM1 shIngO,

const Int64* _ restrict_ _ arrInO_ a0,
const DIM1 shInl,

const Int64*  restrict  arrInl a0,
const DIM1 shOut,

Int64* _ restrict__ arrOut_a0

)

{
const int shapeSize = size(shOut);
const int gridSize = blockDim.x * gridDim.Xx;
int ix;

for (ix = blockDim.x * blockIdx.x + threadIdx.x; ix < shapeSize; ix += gridSize) {
const DimOut sh = fromIndex(shOut, ix);
const int v0 = toIndex(shIn0, shape(sh));
const int vl = toIndex(shInl, shape(sh));

arrOut _al0[ix] = arrInO _aO[v0] * arrInl aO[vl];
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dotp xs ys = fold (+) 0 ( zipWith (*) xs ys )

sdatal[threadIdx.x] = yO0;
}
__syncthreads(); ipwith
if (threadIdx.x < ) {
if (threadIdx.x + < ix) {
X0 = sdatalO[threadIldx.x + 1: arrIn0 a0,
y0 = y0 + x0; ] -
sdatal[threadIdx.x] = yO0; arrinl a0,
} L —
if (threadIdx.x + < ix) { it a0
X0 = sdatalO[threadIdx.x + 1; -
y0 = y0 + x0;
sdataO[threadIdx.x] = yO0; ze (shout) ;
} ckDim.x * gridDim.x;

if (threadIdx.x + < ix) {

x0 = sdataO[threadIdx.x + 8];
y0 = y0 + x0; lockIdx.x + threadIdx.x; ix < shapeSize; ix += gridSize) {
sdatal[threadIdx.x] = yO0; smIndex(shOut, ix);

} 2x(shIn0, shape(sh));

if (threadIdx.x + < ix) {
x0 = sdatalO[threadIdx.x + 4];

y0 = y0 + x0; n0 aO[v0] * arrInl aO[vl];
cAa+FaDTlr+hv+veadTA~ <1 = =x7() e« - -

2x(shInl, shape(sh));



Accelerate



Accelerate

* A deep embedding



Accelerate

* A deep embedding

dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)



Accelerate

* A deep embedding

type Vector e = Array (Z:.Int) e

dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)



Accelerate

* A deep embedding

type Vector e = Array (Z:.Int) e type Scalar e = Array Z e
dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)



Accelerate

* A deep embedding

type Vector e = Array (Z:.Int) e type Scalar e = Array Z e
dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

A
zipWith :: (Exp a -> Exp b -> Exp c)

-> Acc (Array sh a)
-> Acc (Array sh b)

-> Acc (Array sh c)
B e e e




Accelerate

* A deep embedding

type Vector e = Array (Z:.Int) e type Scalar e = Array Z e
dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

T

fold :: (Exp e -> Exp e -> EXp e)
-> EXp e
-> Acc (Array (sh:.Int) e)

-> Acc (Array sh e)

zipWith :: (Exp a -> Exp b -> Exp c)
-> Acc (Array sh a)
-> Acc (Array sh b)

-> Acc (Array sh c)
| , —
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stable fluid flow

d6b821d937a4170b3c4f8ad93495575d: saitek1
d0e52829bf7962ee0aa90550ffdcccaa: laura1230
494a8204b800c41b2da763f9bbbcc462: lina03
d8ff07¢c52a95b30800809758f84ce28c: Jenny10
e81bed02faa9892f8360c705241191ae: carmen89
46f7d75718029de99dd81fd907034bc9: mellon22
0dd3c176¢f34486ec00b526b6920b782: helena04
9351c4bc8c8bal7b58d5a6a1f839f356: 85548554
9¢36¢5599f40d08f874559ac824d091a: 585123456
4b4dce6c91b429e8360aa65f97342e90: 567890
3aa561d4c17d9d58443fc15d10cc86ae: momos5

Recovered 150/1000 (15.00 %) digests in 59.45 s, 185.03 MHash/sec

Password “recovery” (MD5 dictionary attéc

K)

Canny edge detection
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« Matrix-vector multiplication.

* In terms of dotp?

indexl :: Exp Int -> Exp (Z:.Int)
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What's missing!

« Matrix-vector multiplication.

* In terms of dotp?

indexl :: Exp Int -> Exp (Z:.Int)
T — S—tsttmmRSSETT
mvm :: Acc (Array (Z:.Int:.Int) oat)

-> Acc (Vector Float)
-> Acc (Vector Float)
mvm mat vec = generate (indexl (height mat))
(A1 -> the (d3$p vec (getRow 1 mat)))

generate :: EXp sh )T
-> (Exp sh -> Exp e)
> Acc (Arrav sh e the :: Ac¢ (Scalar e) -> Exp e

*** Exception: Cyclic definition of a value of type 'Exp' (sa = 46)
e —————— SRS




What's missing!

« Matrix-vector multiplication.

* In terms of dotp?

indexl :: Exp Int -> Exp (Z:.Int)
mvm :: Acc (Array (Z:.Int:.Int) oat)

-> Acc (Vector Float)
-> Acc (Vector Float)
mvm mat vec = generate (indexl (height mat))
(A1 -> the (d3$p vec (getRow 1 mat)))

generate :: EXp sh )T
-> (Exp sh -> Exp e)
— the :: Ac Scalar e) -> Exp e
| > Acc (Array sh e) | ¢ I ) P
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Nested Parallelism

Which of the following frontend features would help you make better use of Accelerate or enable you to use Accelerate?

Accelerate as a standalone (non-embedded) DSL 20 12%
Accelerate as as... Irregular data structures (e.g., quad-trees, oct-trees) 50 29%

Irregular data Nested parallelism (e.g., map of map, map of fold, etc) 69 41%

il _ Sparse data structures (e.g., sparse matrices) 64 38%
% Nested parallelis...
e Support for graph processing 42 25%

=~

Sparse data Siruc. e

Support for graph...

« NESL

- Data Parallel Haskell (DPH)
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Vector (Vector e)

MVM
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Nested Operations Nested Structures

Vector (Vector e)

Array DIM2 (Vector e)

fact n = i Trees
i map (\m -> product [l..m]) [l..n]
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The lifting transformation

foo :: Int -> Float -> Float
foo] :: Vector Int -> Vector Float -> Vector Float
The size The expression being transformed
panss— TR etestanmstEn
Lolcl = replicate n c (Where C is a constant)
l:n[[X]] = replicate n x (Where x is not a lifted variable)
Ln[[x]] = X (Where x is a lifted variable)
Liel e21 = Lilel] Li[e2]

Ln[D\X-e]] = AX. L(length OE]

(Where p is a built-in operation and p' is the

_ nt
l:n[[P]] =P lifted equivalent)
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The lifting transformation

bar :: Int -> Int
bar = Ax. 2*x + 1

L.bary :: Vector Int -> Vector Int

Libar] = Ax. (replicate (length x) 2) *' x +' (replicate (length x) 1)

What about vector functions?

sum :: Vector Int -> Int

LIsum] :: Vector (Vector Int) -> Vector Int

1
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Will this solution work with multidimensional arrays?

Does it now require this?

foo :: Int -> Float -> Float
L.[fool :: Array sh Int -> Array sh Float -> Array sh Float

No, lifting to vectors is sufficient

- At the machine level it’s all vectors anyway

- What about nested arrays?

- But, we only need vectors of arrays
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type Vector'

..a vector of arrays..

eawstammetiRT
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Vectors of arrays

type Vector' = ..a vector of arrays..
1 2 3 8
{ 4 5 6 10 11 }
3,2)1(2,2) 1(1,1) 1 2 6 7 8 10 | 11
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Seqguences

- Sequences of arrays (or tuples of arrays)
- Can only be accessed linearly
* S0 map, fold and scan, but no permuting, indexing or constant time length

* Like Haskell lists

- Does that mean all the operations have to be made polymorphic over
sequences and arrays?
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Seguence operations
mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]
toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

fromSeq :: Seq [Array sh e] -> Seg (Vector sh, Vector‘e)

Elements not always

the same size
‘M

collect :: Arrays a => Seq a -> Acc a

Array or tuple of
arrays (not a
sequence)



Sequence operations

mvm mat vecC =



Seguence operations

mvm mat vecC =

$ toSeq mat



Seguence operations

mvm mat vecC =

$ mapSeq (dotp vec)
$ toSeq mat



Seguence operations

mvm mat vec =

$ fromSeq
$ mapSeq (dotp vec)
$ toSeq mat



Seguence operations

snhd

collect

fromSeq

mapSeq (dotp vec)
toSeq mat

mvm mat vec

A A A A
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Execution and representation

« Sequentially

- The processing of each element has to expose enough parallelism

* As one large vector
- Use the lifting transform

- Space problems

* Chunk-wise

- Work on many elements in parallel
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* Ideal  foldSeq :: (Acc a -> Acc a -> Acc a)
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Reductions

* Ideal  foldSeq :: (Acc a -> Acc a -> Acc a)
-> Acc a
-> Seq [a]
-> Seq (a)

« Basic

foldSeq :: (Exp a -> Exp a -> Exp a)

-> Seq [Scalar d] Has to be scalar!
-> Seq (Scalar a) — il

The accumulated value

B atiny ——
- Better
foldSeqFlatten :: (Acc a -> Acc (Vector sh) -> Acc (Vector b) -> Acc o)

-> Acc a

_ A h b h
> Seq [Array sh b] A Trciemed dhule

-> Seq a e
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Chunk size

« What'’s the best size?

* A lot of factors involved
- Number of GPU cores
- Available device Memory
- The computation itself

- Space and time analysis of array computations

- Still ongoing work



Streaming

- Sequences allow for working with data sets larger than available GPU
memory

- A painful experience before

« Streaming operations
streamIn :: Arrays a => [a] -> Seq [dad]

streamOut :: Arrays a => Seq [a] -> [d]



| ots more to do

Regularity

- Sequences where all elements are the same size

Streaming from different sources

Stateful operations

- Scans

Nested sequences



Questions?



