
Streaming and Nested Parallelism in Accelerate

Robert Clifton-Everest

University of New South Wales

Jointly with
Frederik M. Madsen

Trevor L. McDonell

Manuel M. T. Chakravarty

Gabriele Keller

GPUs

GPUs

• Lots of raw computing power

- This one: 2688 cores @ 867 MHz

GPUs

• Lots of raw computing power

- This one: 2688 cores @ 867 MHz

• Different hardware design

- Limited instruction set

- SIMD: Cores run the same program, but on different data

GPUs

• Lots of raw computing power

- This one: 2688 cores @ 867 MHz

• Different hardware design

- Limited instruction set

- SIMD: Cores run the same program, but on different data

• How can we take advantage of this power?

GPUs

• Lots of raw computing power

- This one: 2688 cores @ 867 MHz

• Different hardware design

- Limited instruction set

- SIMD: Cores run the same program, but on different data

• How can we take advantage of this power?

With a high-level embedded language of course!

Accelerate

An embedded language for GPU programming

Accelerate

An embedded language for GPU programming

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Embedded
language arrays

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Embedded
language arrays

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Embedded
language arrays

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Embedded
language arrays

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

From Accelerate library

#include <accelerate_cuda.h>
typedef DIM1 DimOut;
extern "C" __global__ void zipWith
(
 const DIM1 shIn0,
 const Int64* __restrict__ arrIn0_a0,
 const DIM1 shIn1,
 const Int64* __restrict__ arrIn1_a0,
 const DIM1 shOut,
 Int64* __restrict__ arrOut_a0
)
{
 const int shapeSize = size(shOut);
 const int gridSize = blockDim.x * gridDim.x;
 int ix;

 for (ix = blockDim.x * blockIdx.x + threadIdx.x; ix < shapeSize; ix += gridSize) {
 const DimOut sh = fromIndex(shOut, ix);
 const int v0 = toIndex(shIn0, shape(sh));
 const int v1 = toIndex(shIn1, shape(sh));

 arrOut_a0[ix] = arrIn0_a0[v0] * arrIn1_a0[v1];
 }

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Embedded
language arrays

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

From Accelerate library

#include <accelerate_cuda.h>
typedef DIM1 DimOut;
extern "C" __global__ void zipWith
(
 const DIM1 shIn0,
 const Int64* __restrict__ arrIn0_a0,
 const DIM1 shIn1,
 const Int64* __restrict__ arrIn1_a0,
 const DIM1 shOut,
 Int64* __restrict__ arrOut_a0
)
{
 const int shapeSize = size(shOut);
 const int gridSize = blockDim.x * gridDim.x;
 int ix;

 for (ix = blockDim.x * blockIdx.x + threadIdx.x; ix < shapeSize; ix += gridSize) {
 const DimOut sh = fromIndex(shOut, ix);
 const int v0 = toIndex(shIn0, shape(sh));
 const int v1 = toIndex(shIn1, shape(sh));

 arrOut_a0[ix] = arrIn0_a0[v0] * arrIn1_a0[v1];
 }

 }
 }
 sdata0[threadIdx.x] = y0;
 __syncthreads();
 ix = min(shapeSize - blockIdx.x * blockDim.x, blockDim.x);
 if (threadIdx.x + 512 < ix) {
 x0 = sdata0[threadIdx.x + 512];
 y0 = y0 + x0;
 sdata0[threadIdx.x] = y0;
 }
 __syncthreads();
 if (threadIdx.x + 256 < ix) {
 x0 = sdata0[threadIdx.x + 256];
 y0 = y0 + x0;
 sdata0[threadIdx.x] = y0;
 }
 __syncthreads();
 if (threadIdx.x + 128 < ix) {
 x0 = sdata0[threadIdx.x + 128];
 y0 = y0 + x0;
 sdata0[threadIdx.x] = y0;
 }
 __syncthreads();
 if (threadIdx.x + 64 < ix) {
 x0 = sdata0[threadIdx.x + 64];
 y0 = y0 + x0;
 sdata0[threadIdx.x] = y0;
 }
 __syncthreads();
 if (threadIdx.x < 32) {
 if (threadIdx.x + 32 < ix) {
 x0 = sdata0[threadIdx.x + 32];
 y0 = y0 + x0;
 sdata0[threadIdx.x] = y0;
 }
 if (threadIdx.x + 16 < ix) {
 x0 = sdata0[threadIdx.x + 16];
 y0 = y0 + x0;
 sdata0[threadIdx.x] = y0;
 }
 if (threadIdx.x + 8 < ix) {
 x0 = sdata0[threadIdx.x + 8];
 y0 = y0 + x0;
 sdata0[threadIdx.x] = y0;
 }
 if (threadIdx.x + 4 < ix) {
 x0 = sdata0[threadIdx.x + 4];
 y0 = y0 + x0;
 sdata0[threadIdx.x] = y0;

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Embedded
language arrays

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

From Accelerate library

Accelerate

• A deep embedding

Accelerate

• A deep embedding

dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)  
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Accelerate

• A deep embedding

dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)  
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

type Vector e = Array (Z:.Int) e

Accelerate

• A deep embedding

dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)  
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

type Vector e = Array (Z:.Int) e type Scalar e = Array Z e

Accelerate

• A deep embedding

dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)  
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

type Vector e = Array (Z:.Int) e type Scalar e = Array Z e

zipWith :: (Exp a -> Exp b -> Exp c)
 -> Acc (Array sh a)
 -> Acc (Array sh b)
 -> Acc (Array sh c)

Accelerate

• A deep embedding

dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)  
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

type Vector e = Array (Z:.Int) e type Scalar e = Array Z e

zipWith :: (Exp a -> Exp b -> Exp c)
 -> Acc (Array sh a)
 -> Acc (Array sh b)
 -> Acc (Array sh c)

fold :: (Exp e -> Exp e -> Exp e)
 -> Exp e
 -> Acc (Array (sh:.Int) e)
 -> Acc (Array sh e)

Accelerate

Mandelbrot fractal

Mandelbrot fractal

n-body gravitational simulation

Mandelbrot fractal

n-body gravitational simulation

Canny edge detection

Mandelbrot fractal

n-body gravitational simulation

Canny edge detection

stable fluid flow

Mandelbrot fractal

n-body gravitational simulation

Canny edge detection

stable fluid flow

...
d6b821d937a4170b3c4f8ad93495575d: saitek1
d0e52829bf7962ee0aa90550ffdcccaa: laura1230
494a8204b800c41b2da763f9bbbcc462: lina03
d8ff07c52a95b30800809758f84ce28c: Jenny10
e81bed02faa9892f8360c705241191ae: carmen89
46f7d75718029de99dd81fd907034bc9: mellon22
0dd3c176cf34486ec00b526b6920b782: helena04
9351c4bc8c8ba17b58d5a6a1f839f356: 85548554
9c36c5599f40d08f874559ac824d091a: 585123456
4b4dce6c91b429e8360aa65f97342e90: 5678go
3aa561d4c17d9d58443fc15d10cc86ae: momo55

Recovered 150/1000 (15.00 %) digests in 59.45 s, 185.03 MHash/sec

Password “recovery” (MD5 dictionary attack)

What’s missing?

What’s missing?

• Matrix-vector multiplication.

What’s missing?

• Matrix-vector multiplication.

• In terms of dotp?

What’s missing?

• Matrix-vector multiplication.

• In terms of dotp?

mvm :: Acc (Array (Z:.Int:.Int) Float)
 -> Acc (Vector Float)
 -> Acc (Vector Float)  
mvm mat vec = generate (index1 (height mat))  
 (λi -> the (dotp vec (getRow i mat)))

What’s missing?

• Matrix-vector multiplication.

• In terms of dotp?

mvm :: Acc (Array (Z:.Int:.Int) Float)
 -> Acc (Vector Float)
 -> Acc (Vector Float)  
mvm mat vec = generate (index1 (height mat))  
 (λi -> the (dotp vec (getRow i mat)))

generate :: Exp sh
 -> (Exp sh -> Exp e)
 -> Acc (Array sh e)

What’s missing?

• Matrix-vector multiplication.

• In terms of dotp?

mvm :: Acc (Array (Z:.Int:.Int) Float)
 -> Acc (Vector Float)
 -> Acc (Vector Float)  
mvm mat vec = generate (index1 (height mat))  
 (λi -> the (dotp vec (getRow i mat)))

index1 :: Exp Int -> Exp (Z:.Int)

generate :: Exp sh
 -> (Exp sh -> Exp e)
 -> Acc (Array sh e)

What’s missing?

• Matrix-vector multiplication.

• In terms of dotp?

mvm :: Acc (Array (Z:.Int:.Int) Float)
 -> Acc (Vector Float)
 -> Acc (Vector Float)  
mvm mat vec = generate (index1 (height mat))  
 (λi -> the (dotp vec (getRow i mat)))

the :: Acc (Scalar e) -> Exp e

index1 :: Exp Int -> Exp (Z:.Int)

generate :: Exp sh
 -> (Exp sh -> Exp e)
 -> Acc (Array sh e)

What’s missing?

• Matrix-vector multiplication.

• In terms of dotp?

mvm :: Acc (Array (Z:.Int:.Int) Float)
 -> Acc (Vector Float)
 -> Acc (Vector Float)  
mvm mat vec = generate (index1 (height mat))  
 (λi -> the (dotp vec (getRow i mat)))

the :: Acc (Scalar e) -> Exp e

*** Exception: Cyclic definition of a value of type 'Exp' (sa = 46)

index1 :: Exp Int -> Exp (Z:.Int)

generate :: Exp sh
 -> (Exp sh -> Exp e)
 -> Acc (Array sh e)

What’s missing?

• Matrix-vector multiplication.

• In terms of dotp?

mvm :: Acc (Array (Z:.Int:.Int) Float)
 -> Acc (Vector Float)
 -> Acc (Vector Float)  
mvm mat vec = generate (index1 (height mat))  
 (λi -> the (dotp vec (getRow i mat)))

the :: Acc (Scalar e) -> Exp e

Nested parallelism

index1 :: Exp Int -> Exp (Z:.Int)

generate :: Exp sh
 -> (Exp sh -> Exp e)
 -> Acc (Array sh e)

Nested Parallelism

Nested Parallelism

Nested Parallelism

Nested Parallelism

• NESL

Nested Parallelism

• NESL

• Data Parallel Haskell (DPH)

Nested Parallelism

Nested Operations Nested Structures

Nested Parallelism

Nested Operations Nested Structures

MVM

Nested Parallelism

Nested Operations Nested Structures

fact n =
 map (\m -> product [1..m]) [1..n]

MVM

Nested Parallelism

Nested Operations Nested Structures

fact n =
 map (\m -> product [1..m]) [1..n]

Vector (Vector e)

MVM

Nested Parallelism

Nested Operations Nested Structures

fact n =
 map (\m -> product [1..m]) [1..n]

Vector (Vector e)

Array DIM2 (Vector e)
MVM

Nested Parallelism

Nested Operations Nested Structures

fact n =
 map (\m -> product [1..m]) [1..n]

Vector (Vector e)

Array DIM2 (Vector e)
MVM

Trees

Nested Parallelism

Nested Operations Nested Structures

fact n =
 map (\m -> product [1..m]) [1..n]

Vector (Vector e)

Array DIM2 (Vector e)
MVM

Trees

Stratification

Acc
Array

Exp
Int Float

Word32
BoolDouble

Stratification

Acc
Array

Exp
Int Float

Word32
BoolDouble

Stratification

Acc
Array

Exp
Int Float

Word32
BoolDouble

Enabling nested parallelism

• Vectorisation (flattening)

Enabling nested parallelism

• Vectorisation (flattening)

- First described by Blelloch and Sabot

Enabling nested parallelism

• Vectorisation (flattening)

- First described by Blelloch and Sabot

Enabling nested parallelism

• Vectorisation (flattening)

- First described by Blelloch and Sabot

- Converts a nested parallel program into a flat parallel program

Enabling nested parallelism

• Vectorisation (flattening)

- First described by Blelloch and Sabot

- Converts a nested parallel program into a flat parallel program

- Programs must be pure, no side effects, no destructive updates, etc.

Enabling nested parallelism

• Vectorisation (flattening)

- First described by Blelloch and Sabot

- Converts a nested parallel program into a flat parallel program

- Programs must be pure, no side effects, no destructive updates, etc.

- Simple, but naive

Enabling nested parallelism

• Vectorisation (flattening)

- First described by Blelloch and Sabot

- Converts a nested parallel program into a flat parallel program

- Programs must be pure, no side effects, no destructive updates, etc.

- Simple, but naive

- Complexity problems

Enabling nested parallelism

• Vectorisation (flattening)

- First described by Blelloch and Sabot

- Converts a nested parallel program into a flat parallel program

- Programs must be pure, no side effects, no destructive updates, etc.

- Simple, but naive

- Complexity problems

- Focus of more recent work

Enabling nested parallelism

• Vectorisation (flattening)

- First described by Blelloch and Sabot

- Converts a nested parallel program into a flat parallel program

- Programs must be pure, no side effects, no destructive updates, etc.

- Simple, but naive

- Complexity problems

- Focus of more recent work

Enabling nested parallelism

• Vectorisation (flattening)

- First described by Blelloch and Sabot

- Converts a nested parallel program into a flat parallel program

- Programs must be pure, no side effects, no destructive updates, etc.

- Simple, but naive

- Complexity problems

- Focus of more recent work

Enabling nested parallelism

• Vectorisation (flattening)

- First described by Blelloch and Sabot

- Converts a nested parallel program into a flat parallel program

- Programs must be pure, no side effects, no destructive updates, etc.

- Simple, but naive

- Complexity problems

- Focus of more recent work

Enabling nested parallelism

The lifting transformation

foo :: Int -> Float -> Float  

Ln⟦foo⟧ :: Vector Int -> Vector Float -> Vector Float

The lifting transformation

foo :: Int -> Float -> Float  

Ln⟦foo⟧ :: Vector Int -> Vector Float -> Vector Float

The expression being transformed

The lifting transformation

foo :: Int -> Float -> Float  

Ln⟦foo⟧ :: Vector Int -> Vector Float -> Vector Float

The size The expression being transformed

The lifting transformation

foo :: Int -> Float -> Float  

Ln⟦foo⟧ :: Vector Int -> Vector Float -> Vector Float

Ln⟦c⟧ = replicate n c (Where c is a constant)

The size The expression being transformed

The lifting transformation

foo :: Int -> Float -> Float  

Ln⟦foo⟧ :: Vector Int -> Vector Float -> Vector Float

Ln⟦c⟧ = replicate n c (Where c is a constant)

Ln⟦x⟧ = replicate n x (Where x is not a lifted variable)

The size The expression being transformed

The lifting transformation

foo :: Int -> Float -> Float  

Ln⟦foo⟧ :: Vector Int -> Vector Float -> Vector Float

Ln⟦c⟧ = replicate n c (Where c is a constant)

Ln⟦x⟧ = replicate n x (Where x is not a lifted variable)

Ln⟦x⟧ = x (Where x is a lifted variable)

The size The expression being transformed

The lifting transformation

foo :: Int -> Float -> Float  

Ln⟦foo⟧ :: Vector Int -> Vector Float -> Vector Float

Ln⟦c⟧ = replicate n c (Where c is a constant)

Ln⟦x⟧ = replicate n x (Where x is not a lifted variable)

Ln⟦x⟧ = x (Where x is a lifted variable)

Ln⟦e1 e2⟧ = Ln⟦e1⟧ Ln⟦e2⟧

The size The expression being transformed

The lifting transformation

foo :: Int -> Float -> Float  

Ln⟦foo⟧ :: Vector Int -> Vector Float -> Vector Float

Ln⟦c⟧ = replicate n c (Where c is a constant)

Ln⟦x⟧ = replicate n x (Where x is not a lifted variable)

Ln⟦x⟧ = x (Where x is a lifted variable)

Ln⟦e1 e2⟧ = Ln⟦e1⟧ Ln⟦e2⟧

Ln⟦λx.e⟧ = λx. L(length x)⟦e⟧

The size The expression being transformed

The lifting transformation

foo :: Int -> Float -> Float  

Ln⟦foo⟧ :: Vector Int -> Vector Float -> Vector Float

Ln⟦c⟧ = replicate n c (Where c is a constant)

Ln⟦x⟧ = replicate n x (Where x is not a lifted variable)

Ln⟦x⟧ = x (Where x is a lifted variable)

Ln⟦e1 e2⟧ = Ln⟦e1⟧ Ln⟦e2⟧

Ln⟦λx.e⟧ = λx. L(length x)⟦e⟧

Ln⟦p⟧ = p↑ (Where p is a built-in operation and p↑ is the
lifted equivalent)

The size The expression being transformed

The lifting transformation

bar :: Int -> Int
bar = λx. 2*x + 1

The lifting transformation

bar :: Int -> Int
bar = λx. 2*x + 1

Ln⟦bar⟧ :: Vector Int -> Vector Int

Ln⟦bar⟧ = λx. (replicate (length x) 2) *↑ x +↑ (replicate (length x) 1)

The lifting transformation

bar :: Int -> Int
bar = λx. 2*x + 1

Ln⟦bar⟧ :: Vector Int -> Vector Int

Ln⟦bar⟧ = λx. (replicate (length x) 2) *↑ x +↑ (replicate (length x) 1)

What about vector functions?

The lifting transformation

bar :: Int -> Int
bar = λx. 2*x + 1

Ln⟦bar⟧ :: Vector Int -> Vector Int

Ln⟦bar⟧ = λx. (replicate (length x) 2) *↑ x +↑ (replicate (length x) 1)

sum :: Vector Int -> Int

What about vector functions?

The lifting transformation

bar :: Int -> Int
bar = λx. 2*x + 1

Ln⟦bar⟧ :: Vector Int -> Vector Int

Ln⟦bar⟧ = λx. (replicate (length x) 2) *↑ x +↑ (replicate (length x) 1)

sum :: Vector Int -> Int

What about vector functions?

Ln⟦sum⟧ :: Vector (Vector Int) -> Vector Int

The lifting transformation

bar :: Int -> Int
bar = λx. 2*x + 1

Ln⟦bar⟧ :: Vector Int -> Vector Int

Ln⟦bar⟧ = λx. (replicate (length x) 2) *↑ x +↑ (replicate (length x) 1)

sum :: Vector Int -> Int

What about vector functions?

Ln⟦sum⟧ :: Vector (Vector Int) -> Vector Int

Nested vectors

Nested vectors

Nested vectors

• Vectors of pointers? Grossly inefficient.

Nested vectors

• Vectors of pointers? Grossly inefficient.

• Blelloch’s solution

Nested vectors

• Vectors of pointers? Grossly inefficient.

• Blelloch’s solution

1 2 3 4{ , 5 6 7 , 8 }

Nested vectors

• Vectors of pointers? Grossly inefficient.

• Blelloch’s solution

1 2 3 4{ , 5 6 7 , 8 }

1 2 3 4 5 6 7 8(,)4 3 1

Vectorisation with multidimensional arrays

• Will this solution work with multidimensional arrays?

Vectorisation with multidimensional arrays

• Will this solution work with multidimensional arrays?

• Does it now require this?
foo :: Int -> Float -> Float  

Ln⟦foo⟧ :: Array sh Int -> Array sh Float -> Array sh Float

Vectorisation with multidimensional arrays

• Will this solution work with multidimensional arrays?

• Does it now require this?
foo :: Int -> Float -> Float  

Ln⟦foo⟧ :: Array sh Int -> Array sh Float -> Array sh Float

• No, lifting to vectors is sufficient

Vectorisation with multidimensional arrays

• Will this solution work with multidimensional arrays?

• Does it now require this?
foo :: Int -> Float -> Float  

Ln⟦foo⟧ :: Array sh Int -> Array sh Float -> Array sh Float

• No, lifting to vectors is sufficient

- At the machine level it’s all vectors anyway

Vectorisation with multidimensional arrays

• Will this solution work with multidimensional arrays?

• Does it now require this?
foo :: Int -> Float -> Float  

Ln⟦foo⟧ :: Array sh Int -> Array sh Float -> Array sh Float

• No, lifting to vectors is sufficient

- At the machine level it’s all vectors anyway

• What about nested arrays?

Vectorisation with multidimensional arrays

• Will this solution work with multidimensional arrays?

• Does it now require this?
foo :: Int -> Float -> Float  

Ln⟦foo⟧ :: Array sh Int -> Array sh Float -> Array sh Float

• No, lifting to vectors is sufficient

- At the machine level it’s all vectors anyway

• What about nested arrays?

- But, we only need vectors of arrays

Vectorisation with multidimensional arrays

• Will this solution work with multidimensional arrays?

• Does it now require this?
foo :: Int -> Float -> Float  

Ln⟦foo⟧ :: Array sh Int -> Array sh Float -> Array sh Float

• No, lifting to vectors is sufficient

- At the machine level it’s all vectors anyway

• What about nested arrays?

- But, we only need vectors of arrays

Vectors of arrays

type Vector' = …a vector of arrays…

Vectors of arrays

1 2 3

4 5 6{ ,
7 8

9 10 , 11 }

type Vector' = …a vector of arrays…

Vectors of arrays

1 2 3

4 5 6{ ,
7 8

9 10 , 11 }

1 2 3 4 5 6 7 8 9 10 11(,)(3,2) (2,2) (1,1)

type Vector' = …a vector of arrays…

Nested Parallelism

Nested Operations Nested Structures

fact n =
 map (\m -> product [1..m]) [1..n]

Vector (Vector e)

Array DIM2 (Vector e)
MVM

Trees

Nested Parallelism

Nested Operations Nested Structures

fact n =
 map (\m -> product [1..m]) [1..n]

Vector (Vector e)

Array DIM2 (Vector e)
MVM

Trees

Nested Parallelism

Nested Operations Nested Structures

fact n =
 map (\m -> product [1..m]) [1..n]

Vector (Vector e)

Array DIM2 (Vector e)
MVM

Trees
Sequences

Sequences

Sequences

• Sequences of arrays (or tuples of arrays)

Sequences

• Sequences of arrays (or tuples of arrays)

• Can only be accessed linearly

Sequences

• Sequences of arrays (or tuples of arrays)

• Can only be accessed linearly

• So map, fold and scan, but no permuting, indexing or constant time length

Sequences

• Sequences of arrays (or tuples of arrays)

• Can only be accessed linearly

• So map, fold and scan, but no permuting, indexing or constant time length

• Like Haskell lists

Sequences

• Sequences of arrays (or tuples of arrays)

• Can only be accessed linearly

• So map, fold and scan, but no permuting, indexing or constant time length

• Like Haskell lists

• Does that mean all the operations have to be made polymorphic over
sequences and arrays?

Sequences

Acc
Array

Exp
Int Float

Word32
BoolDouble

Sequences

Acc
Array

Seq
[]Array

Exp
Int Float

Word32
BoolDouble

Sequences

Acc
Array

Seq
[]Array

Exp
Int Float

Word32
BoolDouble

Sequences

Acc
Array

Seq
[]Array

Exp
Int Float

Word32
BoolDouble

Sequences

Acc
Array

Seq
[]Array

Exp
Int Float

Word32
BoolDouble

Sequence operations

Sequence operations

mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]

Sequence operations

mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]

toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

Sequence operations

mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]

toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

fromSeq :: Seq [Array sh e] -> Seq (Vector sh, Vector e)

Sequence operations

mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]

toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

fromSeq :: Seq [Array sh e] -> Seq (Vector sh, Vector e)

Sequence operations

mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]

toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

fromSeq :: Seq [Array sh e] -> Seq (Vector sh, Vector e)

Elements not always
the same size

Sequence operations

mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]

toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

fromSeq :: Seq [Array sh e] -> Seq (Vector sh, Vector e)

Elements not always
the same size

collect :: Arrays a => Seq a -> Acc a

Sequence operations

mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]

toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

fromSeq :: Seq [Array sh e] -> Seq (Vector sh, Vector e)

Elements not always
the same size

collect :: Arrays a => Seq a -> Acc a

Sequence operations

mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]

toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

fromSeq :: Seq [Array sh e] -> Seq (Vector sh, Vector e)

Elements not always
the same size

collect :: Arrays a => Seq a -> Acc a

Array or tuple of
arrays (not a
sequence)

Sequence operations

mvm mat vec =

Sequence operations

mvm mat vec =mvm mat vec =

 $ toSeq mat

Sequence operations

mvm mat vec =mvm mat vec =

 $ toSeq mat

mvm mat vec =

 $ mapSeq (dotp vec)
 $ toSeq mat

Sequence operations

mvm mat vec =mvm mat vec =

 $ toSeq mat

mvm mat vec =

 $ mapSeq (dotp vec)
 $ toSeq mat

mvm mat vec =

 $ fromSeq
 $ mapSeq (dotp vec)
 $ toSeq mat

Sequence operations

mvm mat vec =mvm mat vec =

 $ toSeq mat

mvm mat vec =

 $ mapSeq (dotp vec)
 $ toSeq mat

mvm mat vec =

 $ fromSeq
 $ mapSeq (dotp vec)
 $ toSeq mat

mvm mat vec = snd
 $ collect
 $ fromSeq
 $ mapSeq (dotp vec)
 $ toSeq mat

Execution and representation

Execution and representation

• Sequentially

- The processing of each element has to expose enough parallelism

Execution and representation

• Sequentially

- The processing of each element has to expose enough parallelism

• As one large vector

- Use the lifting transform

- Space problems

Execution and representation

• Sequentially

- The processing of each element has to expose enough parallelism

• As one large vector

- Use the lifting transform

- Space problems

• Chunk-wise

- Work on many elements in parallel

1 2 3 4[, 5 6 7 , 8 9]10, 11 12, ,…

1 2 3 4[, 5 6 7 , 8 9]10, 11 12, ,…
mapSeq reverse

1 2 3 4[, 5 6 7 , 8 9]10, 11 12, ,…
mapSeq reverse

[]

1 2 3 4[, 5 6 7 , 8 9]10, 11 12, ,…
mapSeq reverse

[]

1 2 3 4[, 5 6 7 , 8 9]10, 11 12, ,…
mapSeq reverse

4 3 2 1 , 7 6 5 ,[]

1 2 3 4[, 5 6 7 , 8 9]10, 11 12, ,…
mapSeq reverse

4 3 2 1 , 7 6 5 ,[]

1 2 3 4[, 5 6 7 , 8 9]10, 11 12, ,…
mapSeq reverse

4 3 2 1 , 7 6 5 ,[]9 8 10, 12 11, ,…

Reductions

Reductions

• Ideal foldSeq :: (Acc a -> Acc a -> Acc a)
 -> Acc a
 -> Seq [a]
 -> Seq (a)

Reductions

• Ideal

• Basic
foldSeq :: (Exp a -> Exp a -> Exp a)
 -> Exp a
 -> Seq [Scalar a]
 -> Seq (Scalar a)

foldSeq :: (Acc a -> Acc a -> Acc a)
 -> Acc a
 -> Seq [a]
 -> Seq (a)

Reductions

• Ideal

• Basic
foldSeq :: (Exp a -> Exp a -> Exp a)
 -> Exp a
 -> Seq [Scalar a]
 -> Seq (Scalar a)

foldSeq :: (Acc a -> Acc a -> Acc a)
 -> Acc a
 -> Seq [a]
 -> Seq (a)

Reductions

• Ideal

• Basic
foldSeq :: (Exp a -> Exp a -> Exp a)
 -> Exp a
 -> Seq [Scalar a]
 -> Seq (Scalar a)

foldSeq :: (Acc a -> Acc a -> Acc a)
 -> Acc a
 -> Seq [a]
 -> Seq (a)

Reductions

• Ideal

• Basic
foldSeq :: (Exp a -> Exp a -> Exp a)
 -> Exp a
 -> Seq [Scalar a]
 -> Seq (Scalar a)

Has to be scalar!

foldSeq :: (Acc a -> Acc a -> Acc a)
 -> Acc a
 -> Seq [a]
 -> Seq (a)

Reductions

• Ideal

• Basic

• Better

foldSeq :: (Exp a -> Exp a -> Exp a)
 -> Exp a
 -> Seq [Scalar a]
 -> Seq (Scalar a)

foldSeqFlatten :: (Acc a -> Acc (Vector sh) -> Acc (Vector b) -> Acc a)
 -> Acc a
 -> Seq [Array sh b]
 -> Seq a

Has to be scalar!

foldSeq :: (Acc a -> Acc a -> Acc a)
 -> Acc a
 -> Seq [a]
 -> Seq (a)

Reductions

• Ideal

• Basic

• Better

foldSeq :: (Exp a -> Exp a -> Exp a)
 -> Exp a
 -> Seq [Scalar a]
 -> Seq (Scalar a)

foldSeqFlatten :: (Acc a -> Acc (Vector sh) -> Acc (Vector b) -> Acc a)
 -> Acc a
 -> Seq [Array sh b]
 -> Seq a

The accumulated value

Has to be scalar!

foldSeq :: (Acc a -> Acc a -> Acc a)
 -> Acc a
 -> Seq [a]
 -> Seq (a)

Reductions

• Ideal

• Basic

• Better

foldSeq :: (Exp a -> Exp a -> Exp a)
 -> Exp a
 -> Seq [Scalar a]
 -> Seq (Scalar a)

foldSeqFlatten :: (Acc a -> Acc (Vector sh) -> Acc (Vector b) -> Acc a)
 -> Acc a
 -> Seq [Array sh b]
 -> Seq a

The accumulated value

Has to be scalar!

foldSeq :: (Acc a -> Acc a -> Acc a)
 -> Acc a
 -> Seq [a]
 -> Seq (a)

Reductions

• Ideal

• Basic

• Better

foldSeq :: (Exp a -> Exp a -> Exp a)
 -> Exp a
 -> Seq [Scalar a]
 -> Seq (Scalar a)

foldSeqFlatten :: (Acc a -> Acc (Vector sh) -> Acc (Vector b) -> Acc a)
 -> Acc a
 -> Seq [Array sh b]
 -> Seq a

The accumulated value

A flattened chunk

Has to be scalar!

foldSeq :: (Acc a -> Acc a -> Acc a)
 -> Acc a
 -> Seq [a]
 -> Seq (a)

Chunk size

Chunk size

• What’s the best size?

Chunk size

• What’s the best size?

• A lot of factors involved

Chunk size

• What’s the best size?

• A lot of factors involved

- Number of GPU cores

Chunk size

• What’s the best size?

• A lot of factors involved

- Number of GPU cores

- Available device Memory

Chunk size

• What’s the best size?

• A lot of factors involved

- Number of GPU cores

- Available device Memory

- The computation itself

Chunk size

• What’s the best size?

• A lot of factors involved

- Number of GPU cores

- Available device Memory

- The computation itself

- Space and time analysis of array computations

Chunk size

• What’s the best size?

• A lot of factors involved

- Number of GPU cores

- Available device Memory

- The computation itself

- Space and time analysis of array computations

• Still ongoing work

Streaming

• Sequences allow for working with data sets larger than available GPU
memory

- A painful experience before

• Streaming operations

streamIn :: Arrays a => [a] -> Seq [a]

streamOut :: Arrays a => Seq [a] -> [a]

Lots more to do

• Regularity

- Sequences where all elements are the same size

• Streaming from different sources

• Stateful operations

- Scans

• Nested sequences

Questions?

