Streaming and Nested Parallelism in Accelerate

Robert Clifton-Everest
University of New South Wales

Frederi
Trevor
Manue

kK M. Madsen
_. McDonell
M. T. Chakravarty

Gabrie

e Keller

GPUs

GPUs

- Lots of raw computing power

- This one: 2688 cores @ 867 MHz

GPUs

- Lots of raw computing power

- This one: 2688 cores @ 867 MHz .

» Different hardware design
- Limited instruction set

- SIMD: Cores run the same program, but on different data

GPUs

- Lots of raw computing power

- This one: 2688 cores @ 867 MHz |

» Different hardware design
- Limited instruction set

- SIMD: Cores run the same program, but on different data

- How can we take advantage of this power?

GPUs

* Lots of raw computing power

- This one: 2688 cores @ 867 MHz

» Different hardware design
- Limited instruction set

- SIMD: Cores run the same program, but on different data

- How can we take advantage of this power?

With a high-level embedded language of course!

Accelerate
An embedded language for GPU programming

:e\.;z

Accelerate
An embedded language for GPU programming

:e\.;z

dotp xXs ys =

—mbedded
anguage arrays

I\

dotp xXs ys =

—mbedded
anguage arrays

I\

dotp xXs ys = zlpWith (*) xs ys

—mbedded
anguage arrays

I\

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

—Mmoeddeo

anguage arrays
LA i / —rom Accelerate liorary

N /N

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

—Mmoeddeo

anguage arrays
LA / —rom Accelerate liorary

/\ / \
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

#include <accelerate cuda.h>
typedef DIM1 DimOut;
extern "C" _ global__ void zipWith

(

const DIM1 shIngO,

const Int64* _ restrict_ _ arrInO_ a0,
const DIM1 shInl,

const Int64* restrict arrInl a0,
const DIM1 shOut,

Int64* _ restrict__ arrOut_a0

)

{
const int shapeSize = size(shOut);
const int gridSize = blockDim.x * gridDim.Xx;
int ix;

for (ix = blockDim.x * blockIdx.x + threadIdx.x; ix < shapeSize; ix += gridSize) {
const DimOut sh = fromIndex(shOut, ix);
const int v0 = toIndex(shIn0, shape(sh));
const int vl = toIndex(shInl, shape(sh));

arrOut _al0[ix] = arrInO _aO[v0] * arrInl aO[vl];

—Mmoeddeo

anguage arrays
LA / —rom Accelerate liorary

N/

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

sdatal[threadIdx.x] = yO0;
}
__syncthreads(); ipwith
if (threadIdx.x <) {
if (threadIdx.x + < ix) {
X0 = sdatalO[threadIldx.x + 1: arrIn0 a0,
y0 = y0 + x0;] -
sdatal[threadIdx.x] = yO0; arrinl a0,
} L —
if (threadIdx.x + < ix) { it a0
X0 = sdatalO[threadIdx.x + 1; -
y0 = y0 + x0;
sdataO[threadIdx.x] = yO0; ze (shout) ;
} ckDim.x * gridDim.x;

if (threadIdx.x + < ix) {

x0 = sdataO[threadIdx.x + 8];
y0 = y0 + x0; lockIdx.x + threadIdx.x; ix < shapeSize; ix += gridSize) {
sdatal[threadIdx.x] = yO0; smIndex(shOut, ix);

} 2x(shIn0, shape(sh));

if (threadIdx.x + < ix) {
x0 = sdatalO[threadIdx.x + 4];

y0 = y0 + x0; n0 aO[v0] * arrInl aO[vl];
cAa+FaDTlr+hv+veadTA~ <1 = =x7() e« - -

2x(shInl, shape(sh));

Accelerate

Accelerate

* A deep embedding

Accelerate

* A deep embedding

dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Accelerate

* A deep embedding

type Vector e = Array (Z:.Int) e

dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Accelerate

* A deep embedding

type Vector e = Array (Z:.Int) e type Scalar e = Array Z e
dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Accelerate

* A deep embedding

type Vector e = Array (Z:.Int) e type Scalar e = Array Z e
dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

A
zipWith :: (Exp a -> Exp b -> Exp c)

-> Acc (Array sh a)
-> Acc (Array sh b)

-> Acc (Array sh c)
B e e e

Accelerate

* A deep embedding

type Vector e = Array (Z:.Int) e type Scalar e = Array Z e
dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

T

fold :: (Exp e -> Exp e -> EXp e)
-> EXp e
-> Acc (Array (sh:.Int) e)

-> Acc (Array sh e)

zipWith :: (Exp a -> Exp b -> Exp c)
-> Acc (Array sh a)
-> Acc (Array sh b)

-> Acc (Array sh c)
| , —

R — e ——

Mandelbrot fractal

Mandelbrot fractal

n-body gravitational simulation

Mandelbrot fractal

Canny edge detection

stable fluid flow

Canny edge detection

stable fluid flow

d6b821d937a4170b3c4f8ad93495575d: saitek1
d0e52829bf7962ee0aa90550ffdcccaa: laura1230
494a8204b800c41b2da763f9bbbcc462: lina03
d8ff07¢c52a95b30800809758f84ce28c: Jenny10
e81bed02faa9892f8360c705241191ae: carmen89
46f7d75718029de99dd81fd907034bc9: mellon22
0dd3c176¢f34486ec00b526b6920b782: helena04
9351c4bc8c8bal7b58d5a6a1f839f356: 85548554
9¢36¢5599f40d08f874559ac824d091a: 585123456
4b4dce6c91b429e8360aa65f97342e90: 567890
3aa561d4c17d9d58443fc15d10cc86ae: momos5

Recovered 150/1000 (15.00 %) digests in 59.45 s, 185.03 MHash/sec

Password “recovery” (MD5 dictionary attéc

K)

Canny edge detection

What's missing?

What's missing!

« Matrix-vector multiplication.

What's missing!

« Matrix-vector multiplication.

* In terms of dotp?

What's missing?

« Matrix-vector multiplication.

* In terms of dotp?

mvm :: Acc (Array (Z:.Int:.Int) Float)
-> Acc (Vector Float)
-> Acc (Vector Float)
mvm mat vec = generate (indexl (height mat))
(ALl -> the (dotp vec (getRow i mat)))

VWhat's missing?

« Matrix-vector multiplication.

* In terms of dotp?

mvm :: Acc (Array (Z:.Int:.Int) Float)
-> Acc (Vector Float)
-> Acc (Vector Float)
mvm mat vec = generate (indexl (height mat))
(ALl -> the (dotp vec (getRow i mat)))

generate :: Exp sh
-> (Exp sh -> Exp e)

-> Acc (Array sh e)
TR Sttt

What's missing!

« Matrix-vector multiplication.

* In terms of dotp?

indexl :: Exp Int -> Exp (Z:.Int)
T — ——etemmmoUOTT
mvm :: Acc (Array (Z:.Int:.Int) oat)

-> Acc (Vector Float)
-> Acc (Vector Float)
mvm mat vec = generate (indexl (height mat))
(ALl -> the (dotp vec (getRow i mat)))

generate :: EXp sh
-> (Exp sh -> Exp e)

-> Acc (Array sh e)
TR — —setmmmETITT

What's missing!

« Matrix-vector multiplication.

* In terms of dotp?

indexl :: Exp Int -> Exp (Z:.Int)

mvm :: Acc (Array (Z:.Int:.Int) oat)
-> Acc (Vector Float)
-> Acc (Vector Float)
mvm mat vec = generate (indexl (height mat))
(ALl -> the (dotp vec (getRow i mat)))

generate :: EXp sh

-> (Exp sh -> Exp e)
-> Acc (Array sh e) the :: Acc (Scalar e) -> Exp e
T — e B -

What's missing!

« Matrix-vector multiplication.

* In terms of dotp?

indexl :: Exp Int -> Exp (Z:.Int)
T — S—tsttmmRSSETT
mvm :: Acc (Array (Z:.Int:.Int) oat)

-> Acc (Vector Float)
-> Acc (Vector Float)
mvm mat vec = generate (indexl (height mat))
(A1 -> the (d3$p vec (getRow 1 mat)))

generate :: EXp sh)T
-> (Exp sh -> Exp e)
> Acc (Arrav sh e the :: Ac¢ (Scalar e) -> Exp e

*** Exception: Cyclic definition of a value of type 'Exp' (sa = 46)
e —————— SRS

What's missing!

« Matrix-vector multiplication.

* In terms of dotp?

indexl :: Exp Int -> Exp (Z:.Int)
mvm :: Acc (Array (Z:.Int:.Int) oat)

-> Acc (Vector Float)
-> Acc (Vector Float)
mvm mat vec = generate (indexl (height mat))
(A1 -> the (d3$p vec (getRow 1 mat)))

generate :: EXp sh)T
-> (Exp sh -> Exp e)
— the :: Ac Scalar e) -> Exp e
| > Acc (Array sh e) | ¢ I) P

Nested parallelism

e

Nested Parallelism

Nested Parallelism

Which of the following frontend features would help you make better use of Accelerate or enable you to use Accelerate?

Accelerate as a standalone (non-embedded) DSL 20 12%
Accelerate as a s... Irregular data structures (e.g., quad-trees, oct-trees) 50 29%
Irregular data st... Nested parallelism (e.g., map of map, map of fold, etc) 69 41%
_ Sparse data structures (e.g., sparse matrices) 64 38%

Nested parallelis...
Support for graph processing 42 25%

Sparse data struc...

Support for graph...

Nested Parallelism

Which of the following frontend features would help you make better use of Accelerate or enable you to use Accelerate?

Accelerate as a standalone (non-embedded) DSL 20 12%

Accelerate as a s... Irregular data structures (e.g., quad-trees, oct-trees) 50 29%

Irregular data S, o ormsase e —— Nested parallelism (e.g., map of map, map of fold, etc) 69 41%

i R Sparse data structures (e.g., sparse matrices) 64 38%
% Nested parallelis...

e Support for graph processing 42 25%

Sparse data STOET T
Support for graph...
0 14 . & 5 N

Nested Parallelism

Which of the following frontend features would help you make better use of Accelerate or enable you to use Accelerate?

Accelerate as a standalone (non-embedded) DSL 20 12%

Accelerate as as... Irregular data structures (e.g., quad-trees, oct-trees) 50 29%

Irregular data St o e —— Nested parallelism (e.g., map of map, map of fold, etc) 69 41%

el S Sparse data structures (e.g., sparse matrices) 64 38%
% Nested parallelis...

e Support for graph processing 42 25%

Sparse dala SIS
Support for graph...
0 14 8 pre = -

« NESL

Nested Parallelism

Which of the following frontend features would help you make better use of Accelerate or enable you to use Accelerate?

Accelerate as a standalone (non-embedded) DSL 20 12%
Accelerate as as... Irregular data structures (e.g., quad-trees, oct-trees) 50 29%

Irregular data Nested parallelism (e.g., map of map, map of fold, etc) 69 41%

il _ Sparse data structures (e.g., sparse matrices) 64 38%
% Nested parallelis...
e Support for graph processing 42 25%

=~

Sparse data Siruc. e

Support for graph...

« NESL

- Data Parallel Haskell (DPH)

Nested Parallelism

Nested Operations Nested Structures

Nested Parallelism

Nested Operations Nested Structures

MVM

Nested Parallelism

Nested Operations Nested Structures

MVM

fact n =
map (\m -> product [l..m]) [1l..n]

Nested Parallelism

Nested Operations Nested Structures

Vector (Vector e)

MVM

fact n =
map (\m -> product [l..m]) [1l..n]

Nested Parallelism

Nested Operations Nested Structures

Vector (Vector e)

MVM
Array DIM2 (Vector e)

fact n =
map (\m -> product [l..m]) [1l..n]

Nested Parallelism

Nested Operations Nested Structures

Vector (Vector e)

MVM
Array DIM2 (Vector e)

fact n = Trees
map (\m -> product [l..m]) [1l..n]

Nested Parallelism

Nested Operations Nested Structures

Vector (Vector e)

Array DIM2 (Vector e)

fact n = i Trees
i map (\m -> product [l..m]) [l..n]

Stratification

-

INt

Double EXP - Boo

Float

~

. WordiZ y
4 N
Array
ACC
g J

Stratification

-

INt

Double EXP - Boo

Float

~

. VfrdiQ y
-) B\
Array
AcCC
_ J

Stratification

-
INt

Double EXP - Boo

Float

~

. V*rdiQ y
4)
Array
ACC
g J

Enabling nested parallelism

Enabling nested parallelism

- Vectorisation (flattening)

Enabling nested parallelism

- Vectorisation (flattening)

- First described by Blelloch and Sabot

Enabling nested parallelism

Compiling Collection-Oriented Languages onto
Massively Parallel Computers

Guy E. RELLOCH

- Vectorisation (flattening) Syt Ml My, A Cmpetr s, g Tl £ 04

AND

Gy W. Sasor

- First described by Blelloch and Sabot Thinking Machines Corporation, 245 First Streer, Casbridge, Massachusetts 02142
b s —

Enabling nested parallelism

Compiling Collection-Oriented Languages onto
Massively Parallel Computers

Guy E. RELLOCH

- Vectorisation (flattening) Slmpl Ml Sy Ao c s gt g S0

AND

Gar W. Sasor

- First described by Blelloch and Sabot Thinting Machines Corporasion, 245 First Siret, Cambridge, Massackusesis 02142
T — et
- Converts a nested parallel program into a flat parallel program

Enabling nested parallelism

Compiling Collection-Oriented Languages onto
Massively Parallel Computers

Guy E. RELLOCH

- Vectorisation (flattening) Concp Mol Usrsy, S of Compatr S, Pisberh, P 151308

Gar W. Sasor

- First described by Blelloch and Sabot Tt Mk Corporton, 245 Fir oo, Comri, Meschss Q2162
M

- Converts a nested parallel program into a flat parallel program

- Programs must be pure, no side effects, no destructive updates, etc.

Enabling nested parallelism

Compiling Collection-Oriented Languages onto
Massively Parallel Computers

Guy E. RELLOCH

- Vectorisation (flattening) Concp Mol Usrsy, S of Compatr S, Pisberh, P 151308

Gar W. Sasor

- First described by Blelloch and Sabot Tt Mk Corporton, 245 Fir oo, Comri, Meschss Q2162
e

- Converts a nested parallel program into a flat parallel program

- Programs must be pure, no side effects, no destructive updates, etc.

- Simple, but naive

Enabling nested parallelism

Compiling Collection-Oriented Languages onto
Massively Parallel Computers —

Guy E. RELLOCH

- Vectorisation (flattening) Conce Moo U, S of ompa o, e, o 513308

Gy W. Saor

- First described by Blelloch and Sabot Thtin Mackie Corporion, 245 Fit Sro, Comridpe, Maschaess 0142

- Converts a nested parallel program into a flat parallel program

- Programs must be pure, no side effects, no destructive updates, etc.
- Simple, but naive

- Complexity problems

Enabling nested parallelism

Compiling Collection-Oriented Languages onto
Massively Parallel Computers —

Guy E. RELLOCH

- Vectorisation (flattening) Conce Moo U, S of ompa o, e, o 513308

Gy W. Saor

- First described by Blelloch and Sabot Thtin Mackie Corporion, 245 Fit Sro, Comridpe, Maschaess 0142

- Converts a nested parallel program into a flat parallel program

- Programs must be pure, no side effects, no destructive updates, etc.
- Simple, but naive

- Complexity problems

- Focus of more recent work

Enabling nested parallelism

Compiling Collection-Oriented Languages onto
Massively Parallel Computers —

Guy E. RELLOCH

- Vectorisation (flattening) Conce Moo U, S of ompa o, e, o 513308

Gy W. Saor

- First described by Blelloch and Sabot Thinking Machines Corporation, 245 First Sirer, Cambridge. Massackusests (2142
e e ettt

- Converts a nested parallel program into a flat parallel program
- Programs must be pure, no side effects, no destructive updates, etc.
- Simple, but naive

- Complexity problems

Vectorisation Avoidance
- Focus of more recent work

Gabriele Keller' Manuel M. T. Chakravarty! Roman Leshchinskiy
Ben Lippmeier’ Simon Peyton Jones'

'School of Computer Science and Engineering *Microsoft Rescarch Ltd
University of New South Wales, Australia Cambridge, England
{keller,chak,rl, benl } @cse unsw edu.au {simonpj } @microsoft.com

Enabling nested parallelism

Compiling Collection-Oriented Languages onto
Massively Parallel Computers

Guy E. RELLOCH

- Vectorisation (flattening) Concp Mol Usrsy, S of Compatr S, Pisberh, P 151308

Gar W. Sasor

- First described by Blelloch and Sabot Tt Mk Corporton, 245 Fir oo, Comri, Meschss Q2162
M

- Converts a nested parallel program into a flat parallel program
- Programs must be pure, no side effects, no destructive updates, etc.
- Simple, but naive

- Complexity problems

Work Efficient Higher-Order Vectorisation

- Focus of more recent work
Ben Lippmeier’ Manuel M. T. Chakravarty’ Gabriele Keller' =~ Roman Leshchinskiy

Simon Peyton Jones*

'Computer Science and Engineering *Microsoft Research Ltd.
University of New South Wales, Australia Cambridge, England

{benl chak keller,rl} @cse.unsw.edu.au {simonpj } @microsoft.com

Enabling nested parallelism

Compiling Collection-Oriented Languages onto
Massively Parallel Computers

Guy E. RELLOCH

- Vectorisation (flattening) Sl S s Ml Cnpur M. g eyl £483000

Gar W. Sasor

- First described by Blelloch and Sabot Thinting Machines Corporasion, 245 First Siret, Cambridge, Massackusesis 02142
- Converts a nested parallel program into a flat parallel program

- Programs must be pure, no side effects, no destructive updates, etc.
- Simple, but naive

- Complexity problems
Data Flow Fusion with S'eriegE;(prgs'si(;ns 'in Haskell
- Focus of more recent work ;

|
B Ben Lippmeier' Manuel M. T. Chakravarty’ Gabriele Keller' ~ Amos Robinson’ \

"Computer Science and Engineering
University of New South Wales, Australia |
{ benl chak, keller,amosr } @cse.unsw.edu.au |

 ———————

The lifting transformation

foo :: Int -> Float -> Float
L.[foo] :: Vector Int -> Vector Float -> Vector Float

The lifting transformation

foo :: Int -> Float -> Float
L.[foo] :: Vector Int -> Vector Float -> Vector Float

The expression being transformed

The lifting transformation

foo :: Int -> Float -> Float
foo] :: Vector Int -> Vector Float -> Vector Float
The size The expression being transformed

The lifting transformation

foo :: Int -> Float -> Float
foo] :: Vector Int -> Vector Float -> Vector Float
The size The expression being transformed
P TR ————vemmmettT

Lolcl = replicate n c (Where C is a constant)

The lifting transformation

foo :: Int -> Float -> Float
foo] :: Vector Int -> Vector Float -> Vector Float
The size The expression being transformed
pnss— TRt B

.Ln[C]]
-Ln[[x]]

replicate n c (Where C is a constant)

replicate n x (Where x is not a lifted variable)

The lifting transformation

foo :: Int -> Float -> Float
foo] :: Vector Int -> Vector Float -> Vector Float
The size The expression being transformed
P——— e e

.£n|IC]]
Ln[[x]]

replicate n c (Where C is a constant)

replicate n x (Where x is not a lifted variable)

Ln[[x]] = X (Where x is a lifted variable)

The lifting transformation

foo :: Int -> Float -> Float
foo] :: Vector Int -> Vector Float -> Vector Float
The size The expression being transformed
—— T R-—— ——etammeSEN
Lolcl = replicate n c (Where C is a constant)
LaIx1 = replicate n x (Where x is not a lifted variable)
Ln[[x]] = X (Where x is a lifted variable)

Lel e2] = Lael] Li[e2]

The lifting transformation

foo :: Int -> Float -> Float
foo] :: Vector Int -> Vector Float -> Vector Float
The size The expression being transformed
—— T R-—— ——etammeSEN
Lolcl = replicate n c (Where C is a constant)
LaIx1 = replicate n x (Where x is not a lifted variable)
Ln[[x]] = X (Where x is a lifted variable)

Lel e2] = Lael] Li[e2]

Ln[D\X-e]] = AX. L(length OE]

The lifting transformation

foo :: Int -> Float -> Float
foo] :: Vector Int -> Vector Float -> Vector Float
The size The expression being transformed
panss— TR etestanmstEn
Lolcl = replicate n c (Where C is a constant)
l:n[[X]] = replicate n x (Where x is not a lifted variable)
Ln[[x]] = X (Where x is a lifted variable)
Liel e21 = Lilel] Li[e2]

Ln[D\X-e]] = AX. L(length OE]

(Where p is a built-in operation and p' is the

_ nt
l:n[[P]] =P lifted equivalent)

The lifting transformation

bar :: Int -> Int
bar = Ax. 2*x + 1

The lifting transformation

bar :: Int -> Int
bar = Ax. 2*x + 1

L.bary :: Vector Int -> Vector Int

Libar] = Ax. (replicate (length x) 2) *' x +' (replicate (length x) 1)

The lifting transformation

bar :: Int -> Int
bar = Ax. 2*x + 1

L.bary :: Vector Int -> Vector Int

Libar] = Ax. (replicate (length x) 2) *' x +' (replicate (length x) 1)

What about vector functions?

The lifting transformation

bar :: Int -> Int
bar = Ax. 2*x + 1

L.bary :: Vector Int -> Vector Int

Libar] = Ax. (replicate (length x) 2) *' x +' (replicate (length x) 1)

What about vector functions?

sum :: Vector Int -> Int

The lifting transformation

bar :: Int -> Int
bar = Ax. 2*x + 1

L.bary :: Vector Int -> Vector Int

Libar] = Ax. (replicate (length x) 2) *' x +' (replicate (length x) 1)

What about vector functions?

sum :: Vector Int -> Int

LIsum] :: Vector (Vector Int) -> Vector Int

The lifting transformation

bar :: Int -> Int
bar = Ax. 2*x + 1

L.bary :: Vector Int -> Vector Int

Libar] = Ax. (replicate (length x) 2) *' x +' (replicate (length x) 1)

What about vector functions?

sum :: Vector Int -> Int

LIsum] :: Vector (Vector Int) -> Vector Int

1

Nested vectors

B e

Nested vectors

Nested vectors

* Vectors of pointers? Grossly inefficient.

Nested vectors

* Vectors of pointers? Grossly inefficient.

« Blelloch’s solution

Nested vectors

* Vectors of pointers? Grossly inefficient.

« Blelloch’s solution

{ 1 2 3 4
)

Nested vectors

* Vectors of pointers? Grossly inefficient.

« Blelloch’s solution

{ 1 2 3 4
)

Vectorisation with multidimensional arrays

 Will this solution work with multidimensional arrays?

Vectorisation with multidimensional arrays

 Will this solution work with multidimensional arrays?

 Does it now require this?

foo :: Int -> Float -> Float
L.[fool :: Array sh Int -> Array sh Float -> Array sh Float

Vectorisation with multidimensional arrays

 Will this solution work with multidimensional arrays?

 Does it now require this?

foo :: Int -> Float -> Float
L.[fool :: Array sh Int -> Array sh Float -> Array sh Float

* No, lifting to vectors is sufficient

Vectorisation with multidimensional arrays

 Will this solution work with multidimensional arrays?

 Does it now require this?

foo :: Int -> Float -> Float
L.[fool :: Array sh Int -> Array sh Float -> Array sh Float

* No, lifting to vectors is sufficient

- At the machine level it’s all vectors anyway

Vectorisation with multidimensional arrays

Will this solution work with multidimensional arrays?

Does it now require this?

foo :: Int -> Float -> Float
L.[fool :: Array sh Int -> Array sh Float -> Array sh Float

No, lifting to vectors is sufficient

- At the machine level it’s all vectors anyway

- What about nested arrays?

Vectorisation with multidimensional arrays

Will this solution work with multidimensional arrays?

Does it now require this?

foo :: Int -> Float -> Float
L.[fool :: Array sh Int -> Array sh Float -> Array sh Float

No, lifting to vectors is sufficient

- At the machine level it’s all vectors anyway

- What about nested arrays?

- But, we only need vectors of arrays

Vectorisation with multidimensional arrays

Will this solution work with multidimensional arrays?

Does it now require this?

foo :: Int -> Float -> Float
L.[fool :: Array sh Int -> Array sh Float -> Array sh Float

No, lifting to vectors is sufficient

- At the machine level it’s all vectors anyway

- What about nested arrays?

- But, we only need vectors of arrays

Vectors of arrays

type Vector' = ..a vector of arrays..
L e —————

Vectors of arrays

type Vector'

..a vector of arrays..

eawstammetiRT

10

11

Vectors of arrays

type Vector' = ..a vector of arrays..
1 2 3 8
{ 4 5 6 10 11 }
3,2)1(2,2) 1(1,1) 1 2 6 7 8 10 | 11

Nested Parallelism

Nested Operations Nested Structures

Vector (Vector e)

MVM
Array DIM2 (Vector e)

fact n =

map (\m -> product [l..m]) [1l..n] Trees

Nested Parallelism

Nested Operations Nested Structures

f Vector (Vector e)

MVM
Array DIM2 (Vector e)

fact n = 1
map (\m -> product [l..m]) [1l..n] §

Nested Parallelism

Nested Operations Nested Structures

f Vector (Vector e)

MVM
Array DIM2 (Vector e)

fact n = 1
map (\m -> product [l..m]) [1l..n] §
: Sequences

Seqguences

Seqguences

- Sequences of arrays (or tuples of arrays)

Seqguences

- Sequences of arrays (or tuples of arrays)

- Can only be accessed linearly

Seqguences

- Sequences of arrays (or tuples of arrays)
- Can only be accessed linearly

* S0 map, fold and scan, but no permuting, indexing or constant time length

Seqguences

- Sequences of arrays (or tuples of arrays)
- Can only be accessed linearly
* S0 map, fold and scan, but no permuting, indexing or constant time length

* Like Haskell lists

Seqguences

- Sequences of arrays (or tuples of arrays)
- Can only be accessed linearly
* S0 map, fold and scan, but no permuting, indexing or constant time length

* Like Haskell lists

- Does that mean all the operations have to be made polymorphic over
sequences and arrays?

Seqguences

-
INt

Double EXP - Boo

Float

~

. W;rcfZ y
4)
Array
ACC
g J

Seqguences

4)
It Float
ouble =XP Boo

7 /WordSZ y

4) 4
Array Array []
AcCC SeQ

- / N

Seqguences

4)
INt Float
Double EXP - Boo

7 /WordSZ y

4) 4
Array Array []
AcCC Se
el d

_ J _

Seqguences

4)
It Float
ouble EXP - Boo
7 /WordSZ y
4) 4 A
Array < rray []
AcCC SeQ
el
- / -

Seqguences

-
INt

Double

Float

EXP Boo
Word32

-
Array

/A

ACC

~

Sequence operations

Seguence operations

mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]

Seguence operations
mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]

toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

Sequence operations
mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]
toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

fromSeq :: Seq [Array sh e] -> Seq (Vector sh, Vector e)

Seguence operations
mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]
toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

fromSeq :: Seq [Array sh e] -> Seg (Vector sh, Vector‘e)

Seguence operations
mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]
toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

fromSeq :: Seq [Array sh e] -> Seg (Vector sh, Vector‘e)

Elements not always

the same size

Seguence operations

mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]
toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

fromSeq :: Seq [Array sh e] -> Seg (Vector sh, Vector‘e)

Elements not always

the same size
B o aaaeamasnaemae

collect :: Arrays a => Seq a -> Acc a

Seguence operations

mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]
toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

fromSeq :: Seq [Array sh e] -> Seg (Vector sh, Vector‘e)

Elements not always

the same size
B s aanamasaassaa

collect :: Arrays a => Seq a -> Acc a

Seguence operations
mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]
toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

fromSeq :: Seq [Array sh e] -> Seg (Vector sh, Vector‘e)

Elements not always

the same size
‘M

collect :: Arrays a => Seq a -> Acc a

Array or tuple of
arrays (not a
sequence)

Sequence operations

mvm mat vecC =

Seguence operations

mvm mat vecC =

$ toSeq mat

Seguence operations

mvm mat vecC =

$ mapSeq (dotp vec)
$ toSeq mat

Seguence operations

mvm mat vec =

$ fromSeq
$ mapSeq (dotp vec)
$ toSeq mat

Seguence operations

snhd

collect

fromSeq

mapSeq (dotp vec)
toSeq mat

mvm mat vec

A A A A

Execution and representation

Execution and representation

« Sequentially

- The processing of each element has to expose enough parallelism

Execution and representation

« Sequentially

- The processing of each element has to expose enough parallelism

* As one large vector
- Use the lifting transform

- Space problems

Execution and representation

« Sequentially

- The processing of each element has to expose enough parallelism

* As one large vector
- Use the lifting transform

- Space problems

* Chunk-wise

- Work on many elements in parallel

10

11

12

N

mapSeq reverse

10

11

12

7

mapSeq reverse

10

3
1
N

N

11

12

.

3
1
N

mapSeq reverse

N

10

11

12

3
1
N

mapSeq reverse

N

10

11

12

mapSeq reverse

N

3
1
N

mapSeq reverse

10

N
9
1

11

12

10

12

11

Reductions

Reductions

* Ideal foldSeq :: (Acc a -> Acc a -> Acc a)
-> Acc a
-> Seq [a]
-> Seq (a)

Reductions

* Ideal foldSeq :: (Acc a -> Acc a -> Acc a)
-> Acc a
-> Seq [a]
-> Seq (a)

« Basic

foldSeq :: (Exp a -> Exp a -> Exp a)
-> Exp a
-> Seq [Scalar a]
-> Seqg (Scalar a)

Reductions

* Ideal foldSeq :: (Acc a -> Acc a -> Acc a)
-> Acc a
-> Seq [a]
-> Seq (a)

« Basic

foldSeq :: (Exp a -> Exp a -> Exp a)
-> Exp a
-> Seq [Scalar a]
-> Seqg (Scalar a)

Reductions

* Ideal foldSeq :: (Acc a -> Acc a -> Acc a)
-> Acc a
-> Seq [a]
-> Seq (a)

« Basic

foldSeq :: (Exp a -> Exp a -> Exp a)
[Bt
-> Seq [Scalar a]
-> Seqg (Scalar a)

Reductions

* Ideal foldSeq :: (Acc a -> Acc a -> Acc a)
-> Acc a
-> Seq [a]
-> Seq (a)

« Basic

foldSeq :: (Exp a -> Exp a -> Exp a)

-> Seq [Scalar a] U o b el
-> Seqg (Scalar a) — —

Reductions

* Ideal foldSeq :: (Acc a -> Acc a -> Acc a)
-> Acc a
-> Seq [a]
-> Seq (a)

« Basic

foldSeq :: (Exp a -> Exp a -> Exp a)

L Bp g —

-> Seq [Scalar a] Has fo be scalar!
-> Seq (Scalar a) — -

- Better

foldSegFlatten :: (Acc a -> Acc (Vector sh) -> Acc (Vector b) -> Acc a)
-> Acc a
-> Seq [Array sh b]
-> Seq a

Reductions

* Ideal foldSeq :: (Acc a -> Acc a -> Acc a)
-> Acc a
-> Seq [a]
-> Seq (a)

« Basic

foldSeq :: (Exp a -> Exp a -> Exp a)

L Bp g —

-> Seq [Scalar a] Has fo be scalar!
-> Seq (Scalar a) — =

The accumulated value
TR el

- Better

foldSegFlatten :: (Acc a -> Acc (Vector sh) -> Acc (Vector b) -> Acc a)
-> Acc a
-> Seq [Array sh b]
-> Seq a

Reductions

* Ideal foldSeq :: (Acc a -> Acc a -> Acc a)
-> Acc a
-> Seq [a]
-> Seq (a)

« Basic

foldSeq :: (Exp a -> Exp a -> Exp a)

. Ekbudw&wm,,»qwhmJ,mé;;;;-uﬁ\

-> Seq [Scalar a] U o b el
-> Seqg (Scalar a) — —

The accumulated value

e e
- Better
foldSeqgFlatten :: (Acc a -> Acc (Vector sh) -> Acc (Vector b) -> Acc a)
> Acc a B T T A S A T TS TP

-> Seq [Array sh b]
-> Seq a

Reductions

* Ideal foldSeq :: (Acc a -> Acc a -> Acc a)
-> Acc a
-> Seq [a]
-> Seq (a)

« Basic

foldSeq :: (Exp a -> Exp a -> Exp a)

-> Seq [Scalar d] Has to be scalar!
-> Seq (Scalar a) — il

The accumulated value

B atiny ——
- Better
foldSeqFlatten :: (Acc a -> Acc (Vector sh) -> Acc (Vector b) -> Acc o)

-> Acc a

_ A h b h
> Seq [Array sh b] A Trciemed dhule

-> Seq a e

Chunk size

Chunk size

« What'’s the best size?

Chunk size

« What'’s the best size?

« A lot of factors involved

Chunk size

« What'’s the best size?

« A lot of factors involved

- Number of GPU cores

Chunk size

« What'’s the best size?

« A lot of factors involved
- Number of GPU cores

- Avallable device Memory

Chunk size

« What'’s the best size?

« A lot of factors involved
- Number of GPU cores
- Available device Memory

- The computation itself

Chunk size

« What'’s the best size?

* A lot of factors involved
- Number of GPU cores
- Available device Memory
- The computation itself

- Space and time analysis of array computations

Chunk size

« What'’s the best size?

* A lot of factors involved
- Number of GPU cores
- Available device Memory
- The computation itself

- Space and time analysis of array computations

- Still ongoing work

Streaming

- Sequences allow for working with data sets larger than available GPU
memory

- A painful experience before

« Streaming operations
streamIn :: Arrays a => [a] -> Seq [dad]

streamOut :: Arrays a => Seq [a] -> [d]

| ots more to do

Regularity

- Sequences where all elements are the same size

Streaming from different sources

Stateful operations

- Scans

Nested sequences

Questions?

