
May-Happen-in-Parllel Analysis for C Programs
∗

Ian J. Hayes1, Daniel Wainwright1, Kirsten Winter1, Chenyi Zhang2

1 School of ITEE, University of Queensland, Australia
2 Oracle Labs, Brisbane, Australia

In our context the aim is to detect data races in large C programs. To be
effective and usable, data race detection requires three main building blocks: an
analysis on shared variables and their accesses, a lockset analysis to determine
which locks are held at each access point, and an analysis to distinguish between
pairs of shared variable accesses that may execute in parallel from those which do
not occur in parallel, namely a May-Happen-in-Parallel (MHP) analysis. MHP
is one of the fundamental analyses needed when analysing concurrent programs
as it is essential when pruning the number of false positives reported.

To precisely compute the set of all parallel instruction pairs is known to be
NP-complete [Tay83], and hence MHP algorithms can only provide an over-
approximiation. Related work is predominantly based on iterative data flow
analysis, an approach that provides fairly precise results but does not seem
to scale to large code bases, or is restricted to programming languages support-
ing specialised synchronisation features. Some results can also be found within
the works on analysing data races in concurrent programs but these approaches
focus mostly on the shared variable and lockset analyses.

A notable exception is the work by Barik [Bar05] on MHP analysis for con-
current Java which uses an abstract hierarchical data structure to capture the
transitive spawn relation between threads in a program. This approach is clos-
est to ours but [Bar05] presents only a complex informal description of their
approach which seems incomplete in places.

Since we are targetting C code in which synchronisation is not lexically scoped
flow- and context-sensitivity become important. To maintain scalability, how-
ever, only a limited degree of sensitivity is feasible and abstractions become
vital. We propose a formalisation of the MHP relation in stages which stepwise
introduce the abstractions applied to the problem. This formalisation provides
us with a better understanding of the problem, showing where abstractions limit
the flow- and context-sensitivity of the approach, and leads to an indication as
to where the problem can be localised.

References

[Bar05] R. Barik. Efficient computation of May-Happen-in-Parallel information for
concurrent Java programs. In Int. Workshop for Languages and Compilers for
Parallel Computing (LCPC 2005), pages 152–169, 2005.

[Tay83] R. N. Taylor. Complexity of analyzing the synchronization structure of con-
current programs. ACTA INFORMATICA, 19(1):57–84, 1983.

∗
This work is supported by Australian Research Council (ARC) Linkage Project
LP0989643.


