
Bound Analysis for Whiley Programs
Inferring Integer Bounds for Efficient Code Generation

Min-Hsien Weng, Mark Utting and Bernhard Pfahringer
Department of Computer Science at the University of Waikato
mw169@students.waikato.ac.nz, marku@waikato.ac.nz, bernhard@waikato.ac.nz

Introduction
The Whiley programming language employs extended static checking to eliminate errors at the com-
pile time, and compiles the high-level Whiley program into different kinds of implementations.[3]
But translating high-leveled Whiley programs into efficient implementations has some challenges.
For example, the use of arbitrary-sized integers downgrades the performance of Whiley implementa-
tion. The bound analyzer aims to assist the compiler to determine the efficient integer data types.

Main Objectives
1. Analyze each bytecode of the Whiley program to produce the constraints (propagation rule).

2. Infer the bounds and keep track of all bounds to analyze the feasibility of fixed points.

3. Determine the efficient integer data types.

Methods
Each integer at bytecode level has its own domain, which contains lower and upper bounds. And those
constraints, produced from each bytecode, could restrict the domain to a finite set. In that case, solv-
ing the constraints over the finite constraint set (a.k.a constraint satisfaction problem) can be tackled
with bound consistency.[2]

Bound Consistency
Bound consistency technique can infer the bounds consistent with all the constraints by propagating
the lower or upper bounds among the variables.

Widening Operator

⊥ ∇ [l0, u0] = [l0, u0]

[l0, u0] ∇ ⊥ = [l0, u0]

[l0, u0] ∇ [l1, u1] = [if (l1 < l0) then l1 else l0,

if (u0 < u1) then u1 else u0]

The widening operator ∇ in abstract interpretation converges the time of reaching the fixed points
by extrapolating the bounds to ± inf.[1] The modified widening operator can be applied on bound
inference to propagate the wider bounds and take the union of other bounds.

Class Diagram

Bounds

#bounds: HashMap<String, Domain>

+isChanged: Boolean

+addUpperBound(name, new_max)

+addLowerBound(name, new_min)

+checkBoundConsistency()

+widenLowerBound(name: String, new_bound: BigInteger)

+widenUpperBound(name, new_bound)

Domain

+name: String

+lower_bound: BigInteger

+upper_bound: BigInteger

+compareTo(domain: Domain)

+clone()

+compare(domain0: Domain, domain1: Domain)

+setLowerBound(bound: BigInteger)

+getLowerBound()

+setUpperBound(bound: BigInteger)

+getUpperBound()

Constraint

+inferBound(bounds: Bounds)

Const GreaterThan

Analyzer

#constraintlist: ConstraintList

#constraintListMap: HashMap<String, ConstraintList>

+analyze(code: Codes.Assign)

+analyze(code: Codes.Const)

+analyze(code: Codes.ForAll)

+analyze(code: Codes.If)

+analyze(code: Codes.Invoke)

+analyze(code: Codes.Label)

+analyze(code: Codes.NewList)

+analyze(code: Codes.Return)

+analyze(code: Codes.UnaryOperator)

BoundAnalyzer

+analyze(wyil: WyILFile)

+dispatch(code: Block.Entry)

+build(delta: Collection<Pair<Entry<?>, Root>>)

Negate

ConstraintList

+list: ArrayList<Constraint>

+addConstraint(constraint: Constraint)

+inferBound(bounds: Bounds)

+inferFixedPoint(bounds: Bounds)

LessThanEquals LessThan Equals

Builder

Comparable Comparator Cloneable

Assign GreaterThan GreaterThanEquals

LeftPlus RightPlus Union

Figure 1: Class Diagram of Bound Analyzer

The bound analyzer is built on top of Whiley compiler project as a new module with extensive inter-
faces and classes in Figure1. It first uses the Whiley compiler to compile the Whiley program into
the in-memory WyIL (Whiley Intermediate Language) code. Then it dispatches each byte-code to
the specific analysis method accordingly for adding the constraints to the list or branching out the
constraint list. After iterating over all the byte-code of a function, it infers the bounds of each list and
take the union of the available bounds to produce the aggregated bound analysis results.

Analysis Result
The bound analyzer is used to analyze the below Whiley program:
function f(int x) => int:

if x < 10:

return 1

else:

if x > 10:

return 2

return 0

It branches the constraint list for if/else statement and outputs the below analysis results:
int f(int):

f.0 [const %2 = 10 : int]

f.1 [ifge %0, %2 goto blklab0 : int]

f.2 [const %3 = 1 : int]

f.3 [return %3 : int]

f.4 [. blklab0]

f.5 [const %5 = 10 : int]

f.6 [ifle %0, %5 goto blklab2 : int]

f.7 [const %6 = 2 : int]

f.8 [return %6 : int]

f.9 [. blklab2]

f.10 [. blklab1]

f.11 [const %7 = 0 : int]

f.12 [return %7 : int]

Union Bounds:

Bounds [

D(%0) = [-infinity ..9]

D(%0 _blklab0) = [10.. infinity]

D(%0 _blklab2) = [-infinity ..10]

D(%2) = [10..10]

D(%3) = [1..1]

D(%5) = [10..10]

D(%6) = [2..2]

D(%7) = [0..0]

D(return) = [0..2]

]

isBoundConsistency=true

The analysis results show that the input parameter (%0) has an infinite domain while the return value
of f (x) is restricted to a finite range ([0..2]), whose values can be stored with a short integer suffi-
ciently.

Conclusions
The bound analyzer can

• add the constraints and infer the bounds for each function in Whiley.

• branch out the constraint list to produce the aggressive analysis results.

• provides an extensible architecture to include more constraints and analysis.

Forthcoming Research
The performance issues on the Whiley implementation include the unbounded integers, unbounded
data structures and extra-value copying problems, etc. By solving those problems, I plan to develop a
Whiley compiler to generate the efficient and reliable OpenCL code.

References
[1] Agostino Cortesi. Widening operators for abstract interpretation. In Sixth IEEE International

Conference on Software Engineering and Formal Methods, SEFM 2008, Cape Town, South Africa,
10-14 November 2008, pages 31–40, 2008.

[2] K. Marriott and P.J. Stuckey. Programming with Constraints: An Introduction. Adaptive Compu-
tation and Machine. MIT Press, 1998.

[3] David J. Pearce. The Whiley Language Specification. Technical report, Victoria University of
Wellington, 2014. Available at http://whiley.org/download/WhileyLanguageSpec.pdf.

Acknowledgements
Thank Dr. David J. Pearce (Whiley creator) for technique support on the Whiley compiler.

http://whiley.org/download/WhileyLanguageSpec.pdf

