
Rate inference for flow fusion

Amos Robinson
PhD student at UNSW

December 15, 2013



Shortcut fusion is great, but. . .

I Relies on inlining - depends on compiler’s mood

I ‘Local’ - only looks at a few combinators at a time

I User must inspect core to find out whether it all fused



Flow fusion is a more global transform

I Being implemented as a GHC compiler plugin

I Core operation fuses set of combinators into single loop, if
possible

I I imagine most of you have seen Ben’s talk on this



Rate inference schedules combinators into groups

I Each group becomes a single loop

I Aim to minimise number of loops and number of buffers

I This is what I’m talking about



Construct graph

I Combinators are nodes

I Folds need all input before producing, so edge is
fusion-preventing

filterMax (vs : Vector Int) =

let vs’ = map (+1) vs

m = fold 0 max vs’

vs’’= filter (>0) vs’

in (m, vs’’)



Size/rate annotation

I Give each input fresh rate variable and propagate

I Filters are of unknown length
with some upper bound



Scheduling

Finding a minimal schedule for this case is easy

I Souces are 0

I w(v) = maxu(w(u) + δ(u, v))

I δ(edge) = 1 if edge is fusion preventing



Scheduling

Finding a minimal schedule for this case is easy

I Souces are 0

I w(v) = maxu(w(u) + δ(u, v))

I δ(edge) = 1 if edge is fusion preventing



Minimal buffers

Some cases aren’t quite as easy to schedule

normalise (vs : Vector Int) =

let m = fold 0 sum vs’

vs’ = map (+1) vs

vs’’= map (/m) vs’

in (vs’’)



Minimal buffers

This scheduling requires a buffer for the first map’s output.



Minimal buffers

I The existing schedule is the earliest

I Working backwards, create a latest schedule

I w(v) = minu(w(u) − δ(u, v))



Minimal buffers

I The optimal schedule is somewhere in between

I The optimal schedule minimises edge crossings

I (In this case it is the same as the latest schedule)



Minimal buffers

I The optimal schedule is somewhere in between

I The optimal schedule minimises edge crossings

I (In this case it is the same as the latest schedule)



Mixing sizes

Combinators of different sizes cannot be fused



Mixing sizes

I Perform scheduling for each size variable separately

I With a slightly different δ function:

I δ(edge) = 1 if edge is fusion preventing and source is same
type



Mixing sizes

I Merge fusible nodes of given type together



Mixing sizes

I Scheduling next type on merged graph



Mixing sizes

I After all types are done, we end up with



Filters

I Filters are special

I Despite being different sizes, they can be fused into their
parents

I I’m still not sure about the best way to do this



The end

thanks



Size/rate annotation redux

It’s a touch more complicated, but pretty boring:

I map2 (zipWith) requires inputs to be same rate

I filters are skolem and can’t be constrained


