
Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 1

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 2

Finding Security Bugs in
Java Programs using Datalog

Bernhard Scholz

Nicholas Allen

Padmanabhan Krishnan

Oracle Labs, Brisbane, Australia

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 3

Disclaimer

The following is intended to provide some insight into a line of research in Oracle

Labs. It is intended for information purposes only, and may not be incorporated into

any contract. It is not a commitment to deliver any material, code, or functionality,

and should not be relied upon in making purchasing decisions. Oracle reserves the

right to alter its development plans and practices at any time, and the development,

release, and timing of any features or functionality described in connection with any

Oracle product or service remains at the sole discretion of Oracle. Any views

expressed in this presentation are my own and do not necessarily reflect the views of

Oracle.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 4

Program Agenda

 Java Security Issues

 Example: Caller Sensitive Methods

 Rapid Prototyping of Program Analyses in Datalog

 Security Analysis for Caller Sensitive Methods

 Experiments

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 5

 Market for buying exploits

 Multi-billion dollar industry

 “Write once, run anywhere”

 Java is platform independent

Large Ecosystem

Zero-day Vulnerability Market [1]

Software Estimates in USD

Adobe Reader $5,000 - $30,000

MAC OS X $20,000 - $50,000

Flash or Java Browser Plug-Ins $30,000 - $60,000

Microsoft Word $40,000 - $100,000

Windows $50,000 - $100,000

Firefox / Safari $60,000 - $120,000

Chrome or Internet Explorer $80,000 - $200,000

IOS $100,000 - $250,000

[1] http://www.net-security.org/secworld.php?id=12652 (March 2012)

http://www.net-security.org/secworld.php?id=12652
http://www.net-security.org/secworld.php?id=12652
http://www.net-security.org/secworld.php?id=12652
http://www.net-security.org/secworld.php?id=12652
http://www.net-security.org/secworld.php?id=12652

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 6

 Security sensitive methods

– must not be invoked unchecked on behalf of untrusted code

– must not escape sensitive information

 If untrusted code invokes security sensitive methods

– perform checks and prevent information leaks of sensitive information

Caller-Sensitive Methods (CSM)
One Possible Attack Vector for Java Exploits

Untrusted

Code

Permission

Check

Security

Sensitive

Method

Sufficient Privileges

Trusted Code
No Leak

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 7

Caller-Sensitive Methods (CSM)

 80% of JDK’s public interfaces may directly or indirectly invoke a CSM

 Example of a CSM

– Class c = Class.forName(“sun…”)

 CSM use reflection

– hard to analyse

 Listed in Secure Coding Guidelines

– Access Control / Section 9

 CSM use caller’s class-loader or package access capabilities

Features and Issues

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 8

Zero-day Exploit Example: CVE-2012-4681

public static Field getField(final Class klass,

 final String fieldName) {

 return AccessController.doPrivileged(

 new PrivilegedAction<Field>() {

 public Field run() {

 try {

 Field field = klass.getDeclaredField(fieldName);

 field.setAccessible(true);

 return field; …

Public method in sun.awt.Toolkit

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 9

Finding Security Bugs

 Testing for Security Bugs

– Testing checks functional requirements and not security!

– Code-inspections are insufficient for finding (most) security bugs

– Complex because of reflection, e.g., CSM

 Automated Bug-Checking Tools

– Find security problems with static program analysis

– By over-approximation using abstract interpretation

 Zero-day exploits demand rapid-prototyping capabilities

– Add new program analysis swiftly for new 0-day exploits

Automated Tools

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 10

Bug Checker in Datalog

 Extractor

– Purely syntactic

 Datalog Engine

– Extensional Database: input relations

– Intensional Database: program analysis specification

Framework

Extractor

Datalog Engine

Java Bytecode
Input

Relations

Program

Analysis

Result

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 11

Security Analysis for CSM

 Some conditions for causing security defects

– Tainted inputs

 User controls actual parameters of CSM

– No permissions checks on a path from a public interface to CSM

– Leak of sensitive information

 Building a security analyses in Datalog

1. Points-to analysis

2. Taint analysis (based on points-to analysis)

3. All-path permission check

4. Escape analysis (based on points-to analysis)

Conditions

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 12

Points-To Analysis

 Flow-insensitive, inclusion-based, context-insensitive (cf. J. Whalley’04)

 Abstract Domain

– Variables

 Local, actual/formal parameters, return-values, bases, this-variables

– Heap-allocated objects

 Creation-site as an abstraction for dynamically created objects

 Heap-allocated object have fields

 Relations for computing points-to analysis

– vP(v,h): variable v may point to heap object h

– hP(h1,f,h2): field f of h1 may point to h2

Using Datalog

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 13

Taint Analysis for CSM

 Taint analysis tracks values emanating from tainted sources

– Tainted values might be controlled by attacker

– Tainted CSM parameters can be dangerous

 Taint analysis

– Context- and flow-insensitive but object-sensitive

– Public interfaces are a tainted source

– Propagation rules for tainting objects

 Relations for computing taint analysis

– tH(h): heap object h might be tainted

– tV(v): variable v might be tainted

Using Datalog

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 14

All-Path Permission Check

 On all paths from a public interface to a CSM callsite

– A permission check must be performed (e.g. checkPackageAccess)

 CSM call-site could be exploited if,

– a permission check is not performed on all paths, and

– CSM parameters are tainted.

 Testing for all-path permission check

– Classical dataflow analysis problem (e.g. GEN/KILL)

– How to implement a dataflow analysis problem in Datalog?

CSM

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 15

All-Path Permission Check

 The all-path permission check for a CSM call-site

CheckedPaths(u)Path(s,u):v:Check(v)

– s is a public interface

– u is a statement (including CSM call-sites)

– Path(s,u) is the set of all program path from s to u

– Check(v) holds if statement v performs a permission check

 Dual logic because of Datalog semantics

 UncheckedPath(u)Path(s,u):v:Check(v)

Using Datalog

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 16

Experiments

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 17

Experiment

 OpenJDK 1.7

– Number of variables: 1.5M

– Number of heap objects: 400K

– Number of methods: 170K

– Number of invocations: 600K

– Number of types: 18K

Problem Size

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 18

 Preliminary Results

Analyses Time Taken

Basic (No Handling of Virtual Dispatch) 40 minutes

Virtual Dispatch + Call Graph Construction 7 hours

Runtime & Effectiveness

Precision (%) Recall (%)

First Taint Model 81 94

Second Taint Model 93 80

 Intel i5-3320 (2.6GHz) machine with 16G memory running Ubuntu 12.10 using the BDDBDDB engine

Using a reference implementation

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 19

Summary & Conclusion

 Static program analysis is essential for checking security properties

 Implementation of program analysis using Datalog:

– Rapid prototyping of different models

– Extensible

– Program analyses in Datalog are concise (=fewer bugs)

– Debugging infrastructure still in its infancy

 Preliminary experiments

– Datalog is efficient enough and effective

Finding Security Bugs using Datalog

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 20

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 21

