
Boa Calculus

Barry Jay
Centre for Quantum Computing and Intelligent Systems

School of Software
University of Technology Sydney

Barry.Jay@uts.edu.au

December 16, 2013

Abstract

Boa calculus combines the best features of lambda calculus,
pattern calculus and factorisation calculus into a single system.

Intensional Computation

Lambda calculus is extensional, being driven by a uniform account
of the input-output behaviour of functions.

Pattern calculus is also intensional, being driven by a uniform
account of internal structure, e.g.

polymorphic update functions

update... : ∀D.D → D

where D represents an arbitrary data structure or database.

Four Approaches

abstraction query data query funs

lambda calculus yes

pattern calculus yes yes

factorisation calculus yes yes

boa calculus yes yes yes

Program analysis queries the internal structure of functions.
Pattern calculus cannot do this; it queries data structures only.
Factorisation calculus queries anything, but no closures.
boa calculus queries lambda abstractions during evaluation.

A Core of Boa Calculus

O ::= S | K | R | G
t ::= x | O | t t | λx .t .

I S and K are traditional.

I R is used to extract free variables from abstractions.

I G is a factorisation operator (like F of SF -calculus).

Represent I by SKK .
(In practice, add I ,Y , constructors and E to support typed
recursion, constructed data and equality of operators.)

Auxiliary concepts

The values are partially applied operators and abstractions, i.e.

v ::= S | St | Stu | K | Kt | R | Rt | G | Gt | Gtu | λx .t

The compounds are all values that are applications.
The eager terms are those of the form

a, b ::= Stu | Rt | Gtu

(but not Kt or λx .s).

The at-terms are those of the form a x where a is eager.

Reduction

There are three sorts of reduction rules: beta rules, operator rules
and at-rules (so boa calculus).
Beta reduction is limited to values and variables.

(λy .s)x ⇀ {x/y}s
(λy .s)v ⇀ {v/y}s .

S ,R and G are call-by-value: K is call-by-name.

Stuv −→ t v (u v)
Ktu −→ t
Rtv −→ λx .t x v (x fresh)

GtuO −→ u
Gtu(qr) −→ t q r (qr a compound)

Note that Stux and Rtx are head normal.
The at-rules will be motivated by the analysis of abstractions.

Manipulating a head variable

Is x free or bound in

λy1.λyn.x u1 . . . uk ?

First, push the head variable to the right using the rules

x u −→ SI (Ku)x
a x u −→ Sa(Ku)x

that produce at-terms, so that

x u1 . . . uk −→ S(S . . . (SI (Ku1)) . . .)(Kuk)x .

Substitution of a value v for x reverses reduction, as in

a v u ←− a v (Kuv)←− Sa(Ku)v .

Strange, but enough for confluence.

Applying functions to at-terms

Add the rules

(λy .s)(a x) ⇀ S(K (λy .s))a x (a eager).
b(a x) ⇀ S(Kb)a x (a, b eager).

This is enough, since all normal forms will be variables, at-terms,
operators or compounds, once the rules for abstractions are added.

Analysing abstractions

λx .x −→ I
λx .y −→ R(KI)y

λx .a x −→ S(λx .a)I
λx .a y −→ R(λx .a)y
λx .O −→ KO
λx .q r −→ S(λx .q)(λx .r) (if q r is a compound.)

There is little room for modification of the constraints.
For example, substituting v for y in the fourth rule yields

λx .a v ←− λx .(λx .a)x v ←− R(λx .a)v

by beta reduction, so need beta for variables as well as values, but
beta for at-terms would break confluence.

An Example

λx .x y −→ λx .SI (Ky) x
−→ S(λx .SI (Ky))I
−→ S(S(λx .SI)(λx .Ky))I
−→ S(S(λx .SI)(S(λx .K)(λx .y)))I
−→ S(S(λx .SI)(S(λx .K)(R(KI)y)))I
. . .

Elimination of a lambda is linear in the number of applications
and so is exponential in the number of nested lambdas.

Equality of closed normal lambda abstractions is now decidable.

Future Work

I Formal proofs of confluence and progress (learning Coq now).

I Constraint types (for typing the equality operator).

I Typed self-interpreters (with Jens Palsberg).

I Program analysis (with Neil Jones).

I Abstract machine (with Jose Vergara).

Conclusions

boa calculus combines the best of extensional and intensional
calculi by adding some operators to lambda calculus.

I supports (eager) beta-reduction (so, closures)

I supports queries of arbitrary closed normal forms (so, select
and update of abstractions)

I aims at (typed) program analysis in the source language.

I Earlier versions required mysterious at-terms t@x but these
simplify to a x with a eager.

