
Grace: An Introductory Object-Oriented Language

Timothy Jones

Victoria University of Wellington, New Zealand

tim@ecs.vuw.ac.nz

Educating novice developers in the art of programming has always been a di�cult task [2]. Instructors

must balance the introduction of important concepts with the need to introduce real-world skills, and

the requirements on learning outcomes di�er wildly between courses and institutions. The result is that

many courses teach enterprise languages such as Java or C++, which contain the necessary concepts but

require the student to navigate syntax and semantics that are super�uous to their learning goals. The

public static void main(String[] args) incantation is the bane of every CS101 instructor for whom Java is

the only choice of language.

Tools such as BlueJ have attempted to mitigate such issues [3], but the core of the problem is that

these languages have made trade-o�s in the name of practicality that complicate early concepts. Some

courses are transitioning to languages like Python in response, but in reality this just exchanges one set of

problems and incantations for another: �oating-point precision errors and oddly named de�nitions are

initially confusing no matter which language they appear in. Using a dynamically-typed language as an

introduction to programming also deprives students of experience with type annotations, which they will

need to know when ultimately progressing to a language in the C family.

It is with these factors in mind that we have been developing Grace, a programming language aimed

primarily at introductory programming courses [1], as part of a collaboration between Portland State

University, Pomona College, and Victoria University of Wellington. The language aims to cover the many

di�erent (and often contradictory) preferences of instructors, but with a focus on object-orientation. The

language can be used to introduce concepts — objects, classes, procedures, type annotations — whenever

required by an instructor. It also employs techniques to remove the burden of con�guration from the

student so that they have all of the required tools immediately on hand.

The primary di�culty in the development of Grace has been uniting the contradictory expectations of

instructors. The language has been designed by a committee of individuals with di�ering preferences, and

a number of interesting design decisions have arisen from the compromises between these positions. This

tension has in�uenced fundamental components of the language such as object inheritance, static errors,

and the meaning of types, and continues to push the language in unexpected directions.

This talk will introduce Grace in the context of its educational goals, discussing interesting features

that set it apart from existing object-oriented languages, including the gradual type system, the object-only

model, and extensible pattern matching. The talk will also aim to highlight the problems that have arisen

from attempting to reconcile the di�ering requirements of instructors, and the idiosyncrasies resulting

from these trade-o�s. For more information, the Grace blog can be found at http://gracelang.org and

the platform and various tools are available at http://ecs.vuw.ac.nz/~mwh/minigrace.

References
[1] Black, A. P., Bruce, K. B., Homer, M., Noble, J., Ruskin, A., and Yannow, R. Seeking Grace: A new object-

oriented language for novices. In Proceeding of the 44th ACM Technical Symposium on Computer Science Education
(New York, NY, USA, 2013), SIGCSE ’13, ACM, pp. 129–134.

[2] Kölling, M. The problem of teaching object-oriented programming, Part I: Languages. JOOP 11, 8 (1999), 8–15.

[3] Kölling, M., �ig, B., Patterson, A., and Rosenberg, J. The BlueJ system and its pedagogy. Journal of Computer
Science Education 13, 4 (Dec 2003).

1

mailto:tim@ecs.vuw.ac.nz
http://gracelang.org
http://ecs.vuw.ac.nz/~mwh/minigrace

