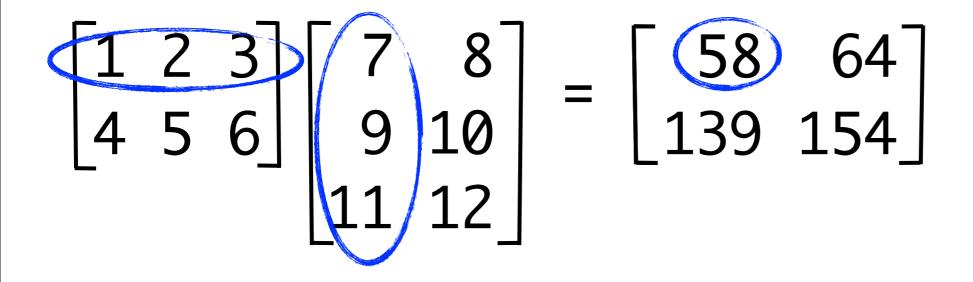
Generic Matrix Multiplication

Sean Seefried

This talk is about generalising matrix multiplication to other data structures

Matrix multiplication



Dot products

Take two vectors of length n

$$u = (u_1, ..., u_n)$$
 $v = (v_1, ..., v_n)$

Dot product is

$$u \cdot v = u_1 v_1 + \ldots + u_n v_n$$

or

$$u \cdot v = \sum_{i=1}^{n} u_i v_i$$

Dot product for lists

dot :: Num a => [a] -> [a] -> a
dot xs ys = foldl (+) 0 (zipWith (*) xs ys)

Dot product for lists

dot :: Num a => [a] -> [a] -> a
dot xs ys = foldl (+) 0 (zipWith (*) xs ys)

Works for lists of different lengths because

Vectors

```
data Z
data S n
infixr 5 `Cons`
data Vec n a where
Nil :: Vec Z a
Cons :: a -> Vec n a -> Vec (S n) a
```

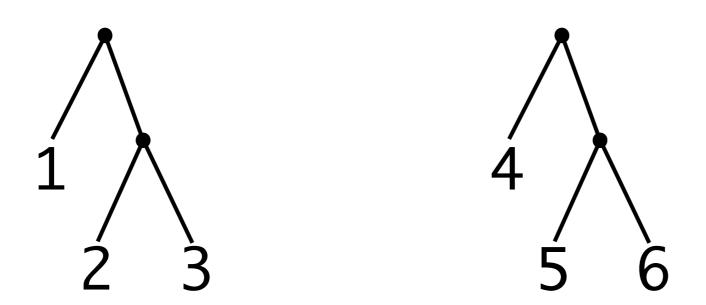
zipWithV

Annoying thing: GHC won't disallow writing this

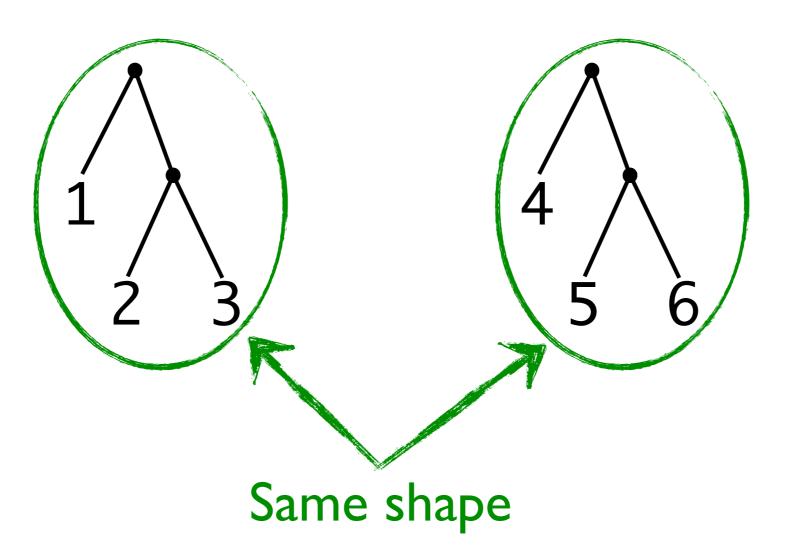
zipWithV f (Cons x xs) Nil = {- ? -} undefined

...but this will never be executed at run time

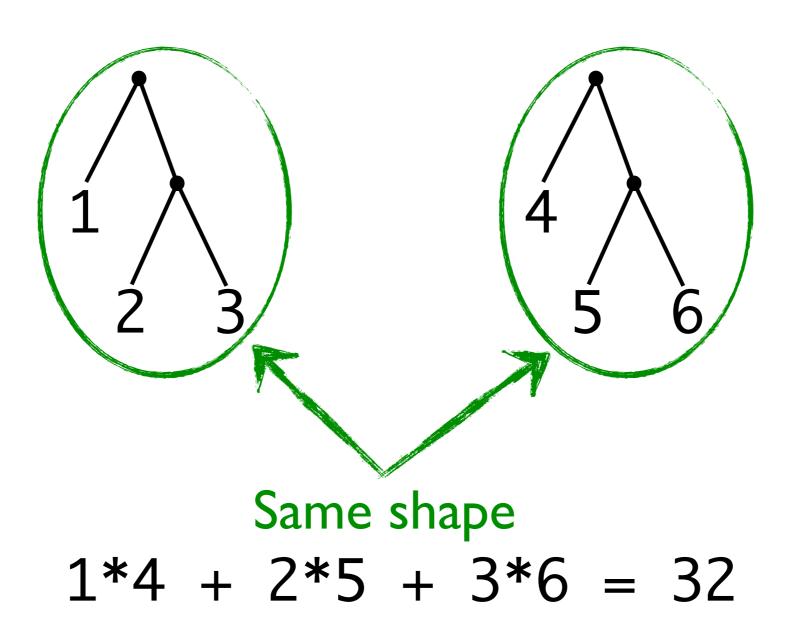
What about other data types?

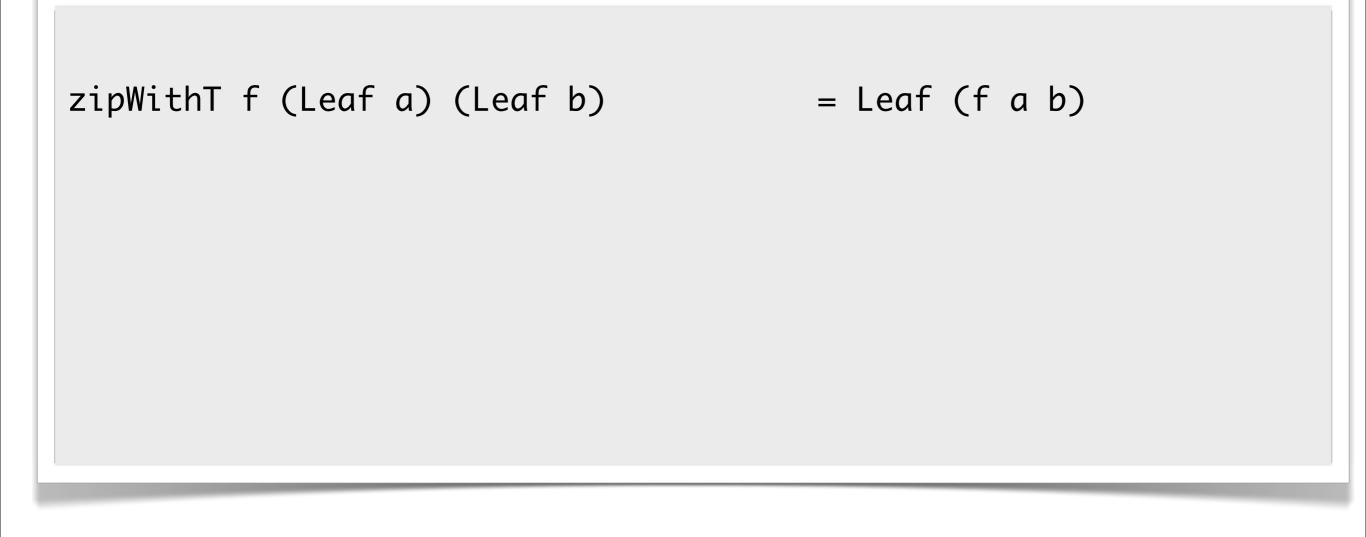


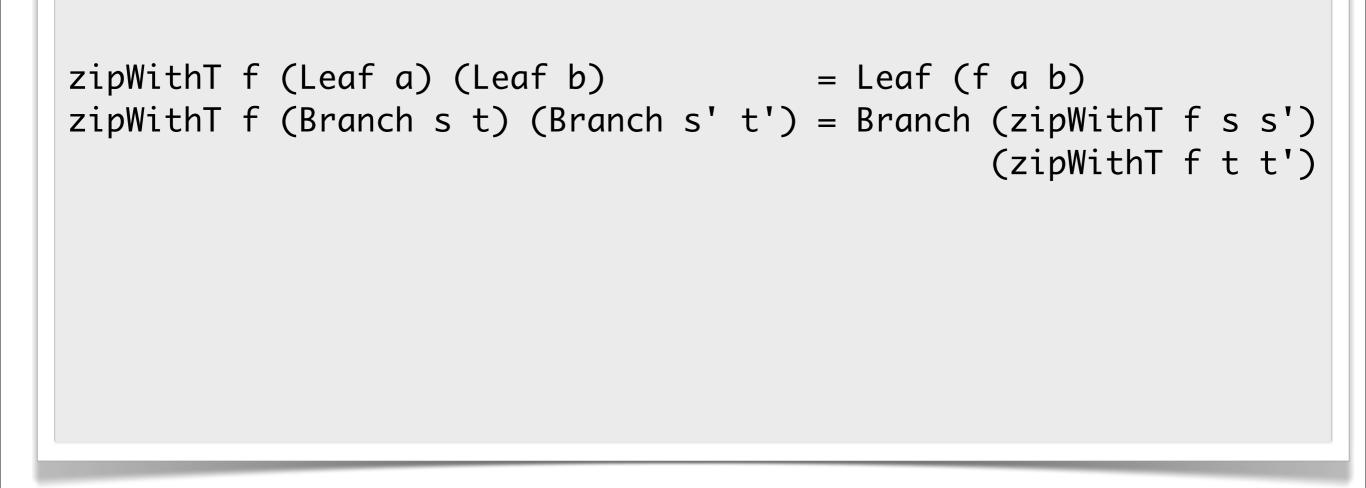
What about other data types?

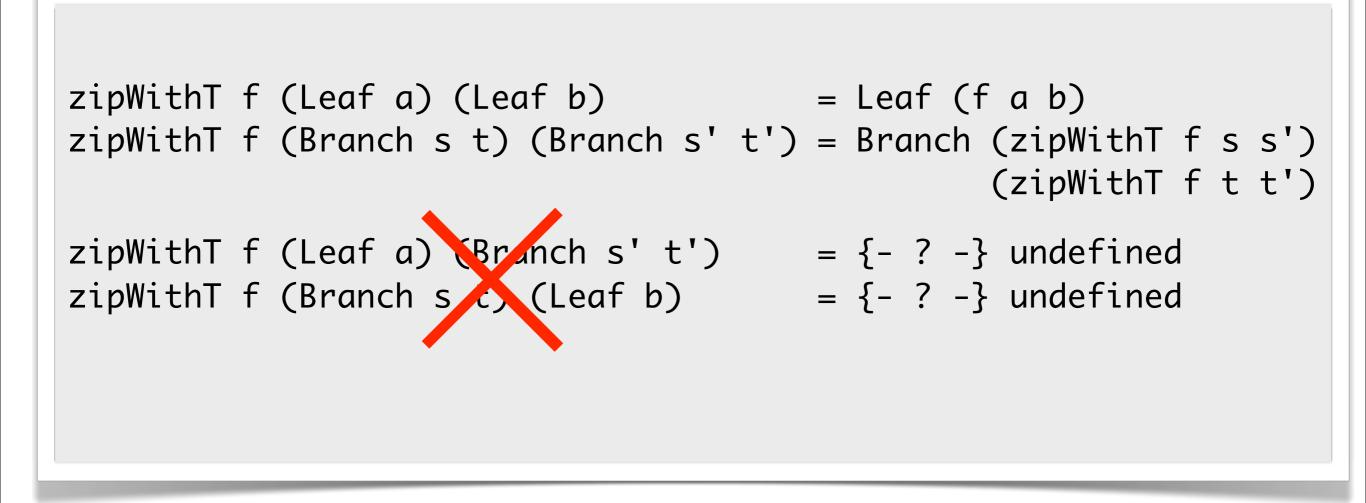


What about other data types?









Shapes

- Use type indexed types. Encode shape of data structure with GADTs
- Type system ensures that only values of same shape can be zipWithed together

Trees with shapes

data Tree sh a where Leaf :: a -> Tree () a Branch :: Tree m a -> Tree n a -> Tree (m,n) a

Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3)) :: Tree ((), ((),()) Int

Generalise with Applicative class

- zipWith is actually liftA2 on ZipList instance of Applicative class.
- Applicative *lifts* a value into a fragment of a larger domain
- Applicative allows you to apply values from this domain to each other.
- All Monads are Applicatives. Not all Applicatives are Monads.

Generalising

zipWith is actually liftA2

liftA2 :: Applicative $f \Rightarrow (a \rightarrow b \rightarrow c) \rightarrow f a \rightarrow f b \rightarrow f c$

Specialised to trees

liftA2 :: (a -> b -> c) -> Tree sh a -> Tree sh b -> Tree sh c

liftA2 (*):: Num a => Tree sh a -> Tree sh a -> Tree sh a

General result

For a data structure T IF you can define Foldable and Applicative instances

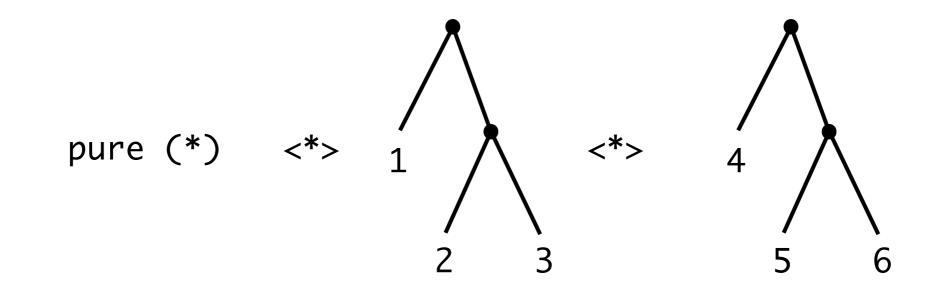
THEN you have dot product!

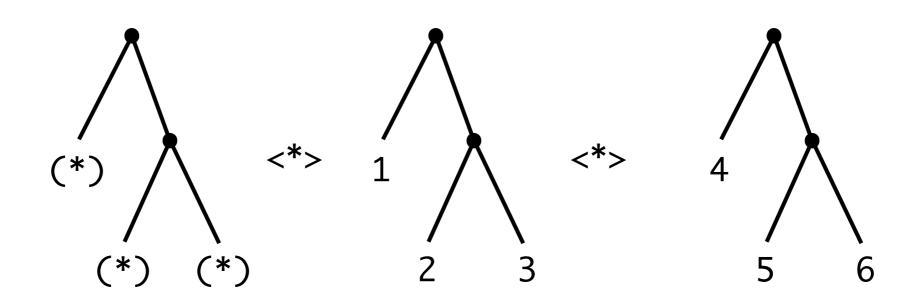
Applicative on Trees with shape

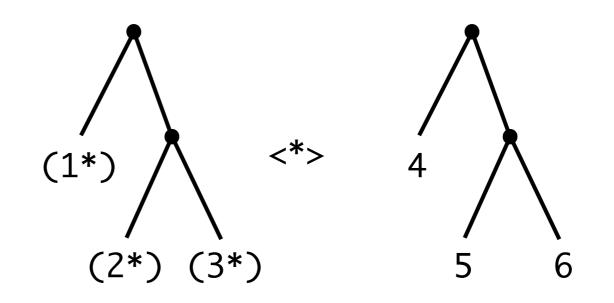
```
instance Applicative (Tree ()) where
pure a = Leaf a
Leaf fa <*> Leaf a = Leaf (fa a)
instance (Applicative (Tree m), Applicative (Tree n)) =>
Applicative (Tree (m,n)) where
pure a = Branch (pure a) (pure a)
(Branch fs ft) <*> (Branch s t) = Branch (fs <*> s) (ft <*> t)
```

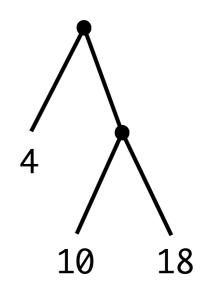
Let's see liftA2 (*) on Trees

liftA2 f a b = pure f <*> a <*> b

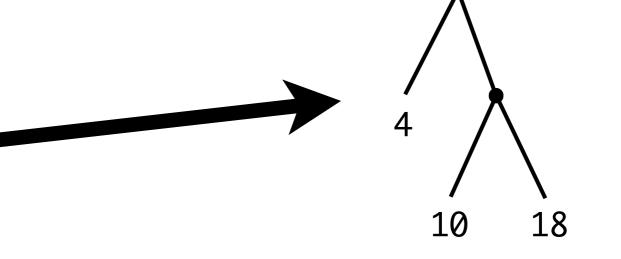








Now just fold (+) over this to get dot product



Now just fold (+) over this to get dot product > 32

Foldable on Trees with shape

class Foldable t where fold :: Monoid m => t m -> m foldMap :: Monoid m => (a -> m) -> t a -> m

```
instance Foldable (Tree sh) where
-- foldMap :: Monoid m => (a -> m) -> Tree sh a -> m
foldMap f (Leaf a) = f a
foldMap f (Branch s t) = foldMap f s `mappend` foldMap f t
-- fold :: Monoid m => Tree sh m -> m
```

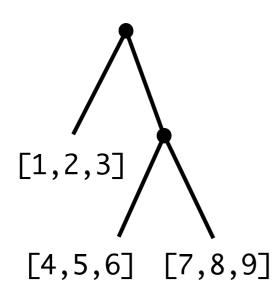
Generic dot product

```
-- Defined in Data.Monoid module
newtype Sum a = Sum { getSum :: a }
    deriving (Eq, Ord, Read, Show, Bounded)
instance Num a => Monoid (Sum a) where
    mempty = Sum 0
    Sum x `mappend` Sum y = Sum (x + y)
```

```
dot :: (Num a, Foldable f, Applicative f) => f a -> f a -> a
dot x y = foldSum $ liftA2 (*) x y
where foldSum = getSum . fold . fmap Sum
```

What is a matrix?

A collection of collections



:: Tree ((), ((), ())) (Vec (S (S (S Z))) Integer)

Generalising dimensions

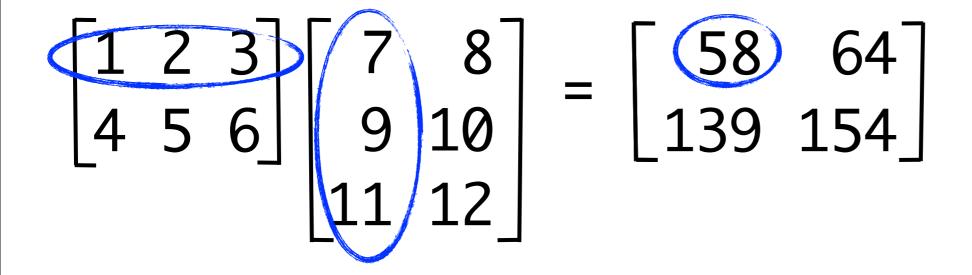
For regular matrices dimensions of input matrices determine dimensions of output matrix

 $m \times n \times n \times p = m \times p$

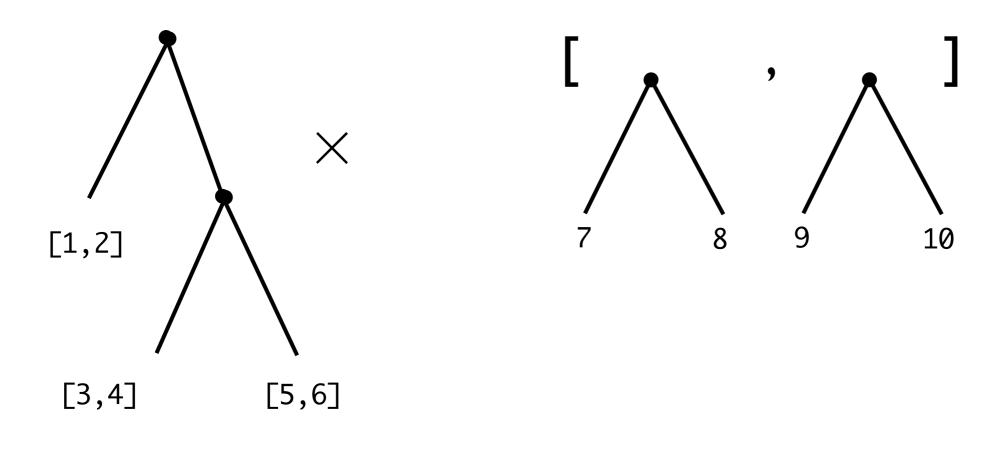
For generic matrices type and shape of input matrices determine type and shape of output matrix

Tree s×*Vec n* × *Vec n*×*Tree t* = *Tree s*×*Tree t*

Recap of matrix multiplication

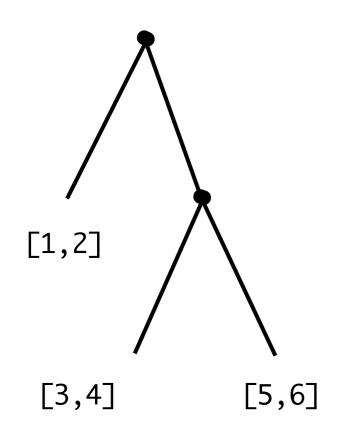


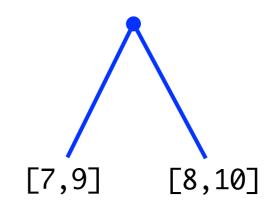
How it's done

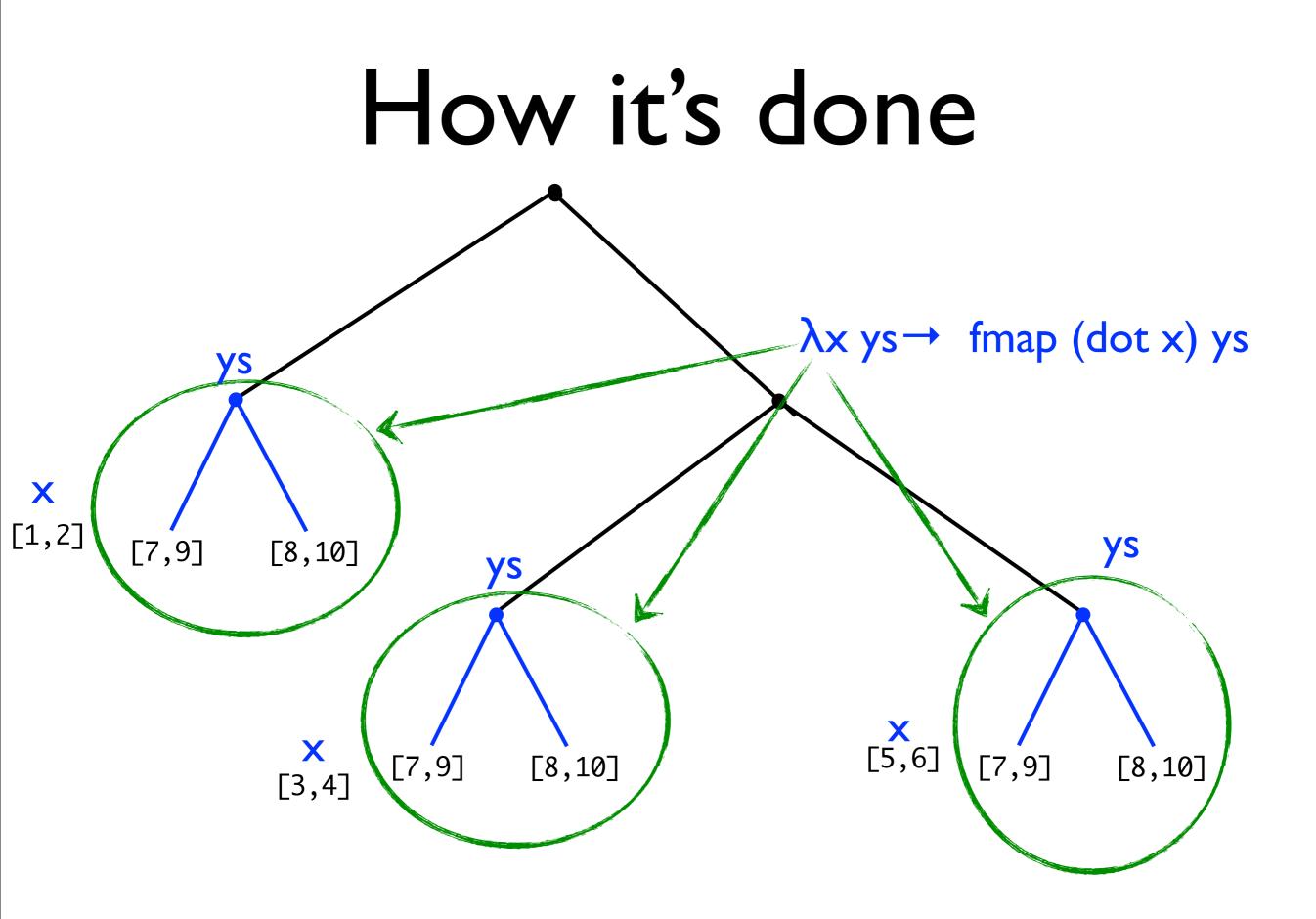


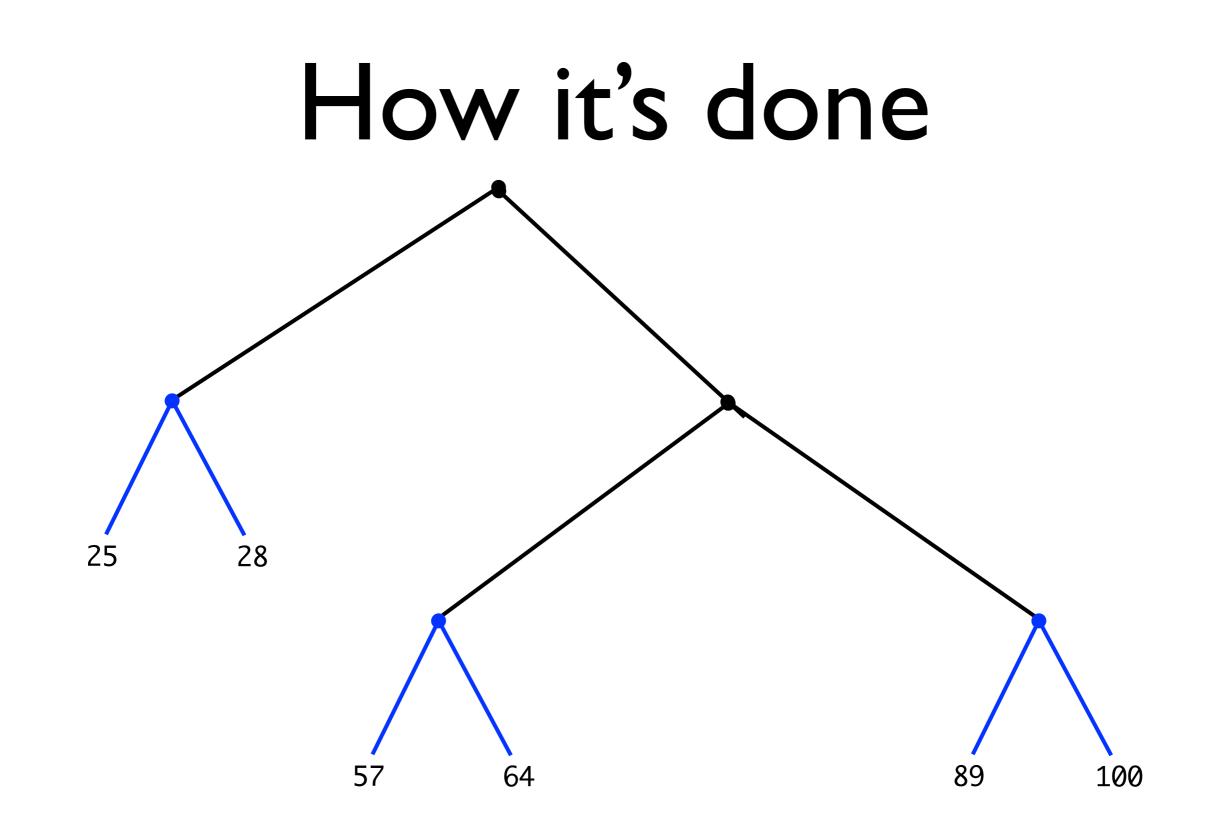
Results should be tree of trees

How it's done









dot :: (Num a, Foldable f, Applicative f) => f a -> f a -> a
dot x y = foldSum \$ liftA2 (*) x y
where foldSum = getSum . fold . fmap Sum

```
transpose :: (Traversable f1, Applicative f2)
          \Rightarrow f1 (f2 a) \rightarrow f2 (f1 a)
transpose = sequenceA
mmult :: (Num a, Applicative f1, Applicative f2, Applicative f3,
          Traversable f1, Traversable f2)
       => f1 (f2 a) -> f2 (f3 a) -> f1 (f3 a)
mmult m1 m2 = fmap (flip (fmap . dot) (transpose m2)) m1
```

DEMO