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This talk is about generalising 
matrix multiplication to other 

data structures
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Matrix multiplication

1 2 3
4 5 6

 7  8
 9 10
11 12

=
 58  64
139 154
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Dot products
Take two vectors of length n

u = (u1, ..., un)  v = (v1, ..., vn)

u ⋅ v = u1v1 + ... + unvn

u ⋅ v = Σ uivi 

n

i = 1

or

Dot product is
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dot :: Num a => [a] -> [a] -> a
dot xs ys = foldl (+) 0 (zipWith (*) xs ys)

Dot product for lists
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Works for lists of different lengths because

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f [] _ = []
zipWith f _ [] = []
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

dot :: Num a => [a] -> [a] -> a
dot xs ys = foldl (+) 0 (zipWith (*) xs ys)

Dot product for lists
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Vectors

data Z
data S n

infixr 5 `Cons`
data Vec n a where
  Nil  :: Vec Z a
  Cons :: a -> Vec n a -> Vec (S n) a
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zipWithV

Annoying thing: GHC won’t disallow writing this

...but this will never be executed at run time

zipWithV :: (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c
zipWithV f Nil         Nil         = Nil
zipWithV f (Cons x xs) (Cons y ys) = f x y 
                                     `Cons`
                                     zipWithV f xs ys

zipWithV f (Cons x xs) Nil = {- ? -} undefined
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What about other data 
types?
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Same shape

What about other data 
types?
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2 3
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5 6

1*4 + 2*5 + 3*6 = 32
Same shape

What about other data 
types?
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zipWith for Trees
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zipWith for Trees

zipWithT f (Leaf a) (Leaf b)           = Leaf (f a b)
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zipWith for Trees

zipWithT f (Leaf a) (Leaf b)           = Leaf (f a b)
zipWithT f (Branch s t) (Branch s' t') = Branch (zipWithT f s s')
                                                (zipWithT f t t')
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zipWith for Trees

zipWithT f (Leaf a) (Leaf b)           = Leaf (f a b)
zipWithT f (Branch s t) (Branch s' t') = Branch (zipWithT f s s')
                                                (zipWithT f t t')

zipWithT f (Leaf a) (Branch s' t')     = {- ? -} undefined
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zipWith for Trees

zipWithT f (Leaf a) (Leaf b)           = Leaf (f a b)
zipWithT f (Branch s t) (Branch s' t') = Branch (zipWithT f s s')
                                                (zipWithT f t t')

zipWithT f (Leaf a) (Branch s' t')     = {- ? -} undefined
zipWithT f (Branch s t) (Leaf b)       = {- ? -} undefined
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Shapes

• Use type indexed types. Encode shape of data 
structure with GADTs

• Type system ensures that only values of 
same shape can be zipWithed together
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Trees with shapes

data Tree sh a where
  Leaf   :: a -> Tree () a
  Branch :: Tree m a -> Tree n a -> Tree (m,n) a

Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3)) 
                                    :: Tree ((), ((),())) Int
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Generalise with 
Applicative class

• zipWith is actually liftA2 on ZipList 
instance of Applicative class.

• Applicative lifts a value into a fragment of 
a larger domain

• Applicative allows you to apply values 
from this domain to each other.

• All Monads are Applicatives. Not all 
Applicatives are Monads.
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class (Functor f) => Applicative f where
  pure  :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b
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Generalising
zipWith is actually liftA2

liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c

liftA2 :: (a -> b -> c) -> Tree sh a -> Tree sh b -> Tree sh c

Specialised to trees

liftA2 (*):: Num a => Tree sh a -> Tree sh a -> Tree sh a
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For a data structure T

IF

THEN

you can define Foldable and Applicative instances

you have dot product!

General result
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Applicative on Trees 
with shape

instance Applicative (Tree ()) where
  pure a                          = Leaf a
  Leaf fa <*> Leaf a              = Leaf (fa a)

instance (Applicative (Tree m), Applicative (Tree n)) =>
          Applicative (Tree (m,n)) where
  pure a                          = Branch (pure a) (pure a)
  (Branch fs ft) <*> (Branch s t) = Branch (fs <*> s) (ft <*> t)
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Let’s see liftA2 (*) 
on Trees
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<*><*>pure (*)

liftA2 (*) on Trees

liftA2 f a b = pure f <*> a <*> b
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liftA2 (*) on Trees

1

2 3

4

5 6

<*><*>(*)

(*) (*)
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(1*)

(2*) (3*)

4

5 6

<*>

liftA2 (*) on Trees
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liftA2 (*) on Trees
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liftA2 (*) on Trees

Now just fold (+) 
over this to get 

dot product
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liftA2 (*) on Trees

Now just fold (+) 
over this to get 

dot product

32
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 Foldable on Trees with 
shape

instance Foldable (Tree sh) where
  -- foldMap :: Monoid m => (a -> m) -> Tree sh a -> m
  foldMap f (Leaf a)     = f a
  foldMap f (Branch s t) = foldMap f s `mappend` foldMap f t

  -- fold :: Monoid m => Tree sh m -> m

class Foldable t where
  fold    :: Monoid m => t m -> m
  foldMap :: Monoid m => (a -> m) -> t a -> m
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dot :: (Num a, Foldable f, Applicative f) => f a -> f a -> a
dot x y = foldSum $ liftA2 (*) x y
  where foldSum = getSum . fold . fmap Sum

Generic dot product
-- Defined in Data.Monoid module
newtype Sum a = Sum { getSum :: a }
        deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Sum a) where
        mempty = Sum 0
        Sum x `mappend` Sum y = Sum (x + y)
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What is a matrix?
A collection of collections

[1,2,3]

[7,8,9][4,5,6]

:: Tree ((), ((), ())) (Vec (S (S (S Z))) Integer)
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Generalising 
dimensions

m×n ✕ n×p = m×p

For regular matrices dimensions of input matrices 
determine dimensions of output matrix

For generic matrices type and shape of input matrices 
determine type and shape of output matrix

Tree s×Vec n ✕ Vec n×Tree t = Tree s×Tree t
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Recap of matrix 
multiplication

1 2 3
4 5 6

 7  8
 9 10
11 12

=
 58  64
139 154
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[            ,           ]

7 8[1,2]

[5,6][3,4]

╳

How it’s done

Results should be tree of trees

9 10
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How it’s done

[1,2]

[5,6][3,4]

[7,9] [8,10]
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How it’s done

λx ys→  fmap (dot x) ys

[1,2]

[3,4]
[5,6]

x

x x

ys

ys ys[7,9] [8,10]

[7,9] [8,10] [7,9] [8,10]
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How it’s done

25 28

57 64 89 100
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transpose :: (Traversable f1, Applicative f2) 
          => f1 (f2 a) -> f2 (f1 a)
transpose = sequenceA

mmult :: (Num a, Applicative f1, Applicative f2, Applicative f3,
          Traversable f1, Traversable f2)
       => f1 (f2 a) -> f2 (f3 a) -> f1 (f3 a)
mmult m1 m2 = fmap (flip (fmap . dot) (transpose m2)) m1

dot :: (Num a, Foldable f, Applicative f) => f a -> f a -> a
dot x y = foldSum $ liftA2 (*) x y
  where foldSum = getSum . fold . fmap Sum
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DEMO
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