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This talk is about generalising
matrix multiplication to other
data structures
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Matrix multiplication

139 154
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Dot products

Take two vectors of length n

u = (u, ..., Un) Vv =(v, ..., Vn)
Dot product is

UV =uv: t ...+t UnVn
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Dot product for lists

dot :: Num a => [a] -> [a] -> a
dot xs ys = foldl (+) @0 (zipWith (*) xs ys)
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Dot product for lists

dot :: Num a => [a] -> [a] -> a
dot xs ys = foldl (+) @0 (zipWith (*) xs ys)

Works for lists of different lengths because

zipWith :: (a -> b -> ¢) -> [a] -> [b] -> [c]
zipWith f [] _ = []

zipWith f _ [] = []

zipWith f (x:xs) (y:ys) = f xy : zipWith f xs ys
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Vectors

data Z
data S n

infixr 5 Cons’
data Vec n a where
Nil :: Vec Z a
Cons :: a ->Vecna ->Vec (Sn)a
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zipWithV

zipWithV :: (a > b -> ¢c) ->Vecnha->Vecnb ->Vecnc
zipWithV f Nil Nil = Nil
zipWithV f (Cons x xs) (Cons y ys) = f x vy

“Cons

zipWithV f xs ys

Ce—— R————

Annoying thing: GHC won'’t disallow writing this

zipWithV f (Cons x xs) Nil = {- ? -} undefined

...but this will never be executed at run time
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What about other data
types’
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What about other data
types’

Samehape
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What about other data
types’

Samehape

1*4 + 2*5 + 3*0 = 32
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zipWith for Trees
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zipWith for Trees

zipWithT f (Leaf a) (Leaf b) = Leaf (f a b)
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zipWith for Trees

zipWithT f (Leaf a) (Leaf b)

zipWithT f (Branch s t) (Branch s'

th)

Leaf (f a b)
Branch (zipWithT f
(zipWithT f
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zipWith for Trees

zipWithT f (Leaf a) (Leaf b)
z1pWithT f (Branch s t) (Branch s' t')

Leaf (f a b)
Branch (zipWithT f s s')
(zipWithT f t t")

zipWithT f (Leaf a) (Branch s' t') {- ? -} undefined
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zipWith for Trees

zipWithT f (Leaf a) (Leaf b)
z1pWithT f (Branch s t) (Branch s' t')

Leaf (f a b)
Branch (zipWithT f s s')
(zipWithT f t t")

zipWithT f (Leaf a) fnch s' t')
zipWithT f (Branch s (Leaf b)

{- ? -} undefined
{- 7 -} undefined
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Shapes

® Use type indexed types. Encode shape of data
structure with GADTs

® Type system ensures that only values of
same shape can be zi1pWithed together




Trees with shapes

data Tree sh a where
Leaf c:a -> Tree () a
Branch :: Tree m a -> Tree n a -> Tree (m,n) a

Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))
1 Tree (O, (0O,0)) Int
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Generalise with

Applicative class

® zipWith is actually liftA2 on ZipList
instance of Applicative class.

* Applicative lifts a value into a fragment of
a larger domain

* Applicative allows you to apply values
from this domain to each other.

® All Monads are Applicatives. Not all
Applicatives are Monads.




class (Functor f) => Applicative f where
pure :: a ->f a
(<*>) :: f (a->b) >fa->fb
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Generalising

zipWith is actually 11ftA2

11ftA2 :: Applicative f = (a ->b ->c¢c) > fa ->f b ->f c

Specialised to trees

LliftA2 :: (a -=> b -> ¢) -> Tree sh a -> Tree sh b -> Tree sh c

LiftA2 (*):: Num a = Tree sh a -> Tree sh a -> Tree sh a
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General result

For a data structure T

I F you can define Foldable and Applicative instances

TH E N you have dot product!
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Applicative on Irees
with shape

instance Applicative (Tree ()) where
pure a = Leaf a
Leaf fa <*> Leaf a = Leaf (fa a)

instance (Applicative (Tree m), Applicative (Tree n)) =>
Applicative (Tree (m,n)) where
pure a = Branch (pure a) (pure a)
(Branch fs ft) <*> (Branch s t) = Branch (fs <*> s) (ft <*> t)
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Let’s see 1iftA2 (*)
on [rees
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LiftA2 (*) on lrees

11ftA2 f a b = pure f <*> a <*> b

pure (*) <*> 16\ <*> 4/>\
2 3 5 o
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LiftA2 (*) on lrees

NN N

GO G
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LiftA2 (*) on lrees

NN

2*) (3%)
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LiftA2 (*) on lrees

/N

10 18
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LiftA2 (*) on lrees

NOW jUSt fold (+) >

over this to get

dot product o 18
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LiftA2 (*) on lrees

Now just fold (+) m 32

over this to get
dot product
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Foldable on Trees with
shape

class Foldable t where
fold 2 Monoid m=>tm->m
foldMap :: Monoid m => (a ->m) -> ta ->m

instance Foldable (Tree sh) where
-- foldMap :: Monoid m => (a -> m) -> Tree sh a -> m
foldMap f (Leaf a) =1 a
foldMap f (Branch s t) = foldMap f s mappend  foldMap f t

-- fold :: Monoid m => Tree sh m -> m
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Generic dot product

-- Defined in Data.Monoid module
newtype Sum a = Sum { getSum :: a }
deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Sum a) where
mempty = Sum 0
Sum x "mappend Sum y = Sum (X + y)

dot :: (Num a, Foldable f, Applicative f) = f a -> f a -> a
dot x y = foldSum $ 1iftA2 (*) x vy
where foldSum = getSum . fold . fmap Sum
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What is a matrix/?

A collection of collections

[1,2,3] :r Tree (O, (O, O)) (Vec (S (S (5 2))) Integer)

[4,5,6] [7,8,9]

Tuesday, 27 November 12



Generalising
dimensions

For regular matrices dimensions of input matrices
determine dimensions of output matrix

mxn X nxXp = mxp

For generic matrices type and shape of input matrices
determine type and shape of output matrix

Tree sxVecn X Vec nxTree t = Tree sxTree t
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Recap of matrix
multiplication
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How it’s done

[ ]
SRVANVAN

[3,4] [5,6]

[1,2]

Results should be tree of trees
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How it’s done

/\

[7,9] [8,10]
[1,2]

[3,4] [5,6]
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How it’s done

S N ?X ys— fmap (dot x) ys
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How it’s done

25 28

57 04 89 100
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dot :: (Num a, Foldable f, Applicative f) => f a -> f a -> a
dot x y = foldSum $ 1iftA2 (*) x y
where foldSum = getSum . fold . fmap Sum

transpose :: (Traversable f1l, Applicative f2)
=> f1 (f2 a) -> f2 (fl a)
transpose = sequenceA

mmult :: (Num a, Applicative fl, Applicative f2, Applicative f3,
Traversable fl1l, Traversable f2)
=> f1 (f2 a) -> f2 (f3 a) -> f1 (f3 a)
mmult ml m2 = fmap (flip (fmap . dot) (transpose mZ2)) ml
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DEMO
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