Generic Matrix
Multiplication

Sean Seefried

eeeeeeeeeeeeeeeeeeee

This talk is about generalising
matrix multiplication to other
data structures

eeeeeeeeeeeeeeeeeeee

Matrix multiplication

139 154

eeeeeeeeeeeeeeeeeeee

Dot products

Take two vectors of length n

u = (u, ..., Un) Vv =(v, ..., Vn)
Dot product is

UV =uv: t ...+t UnVn

Tuesday, 27 November 12

Dot product for lists

dot :: Num a => [a] -> [a] -> a
dot xs ys = foldl (+) @0 (zipWith (*) xs ys)

eeeeeeeeeeeeeeeeeeee

Dot product for lists

dot :: Num a => [a] -> [a] -> a
dot xs ys = foldl (+) @0 (zipWith (*) xs ys)

Works for lists of different lengths because

zipWith :: (a -> b -> ¢) -> [a] -> [b] -> [c]
zipWith f [] _ = []

zipWith f _ [] = []

zipWith f (x:xs) (y:ys) = f xy : zipWith f xs ys

Tuesday, 27 November 12

Vectors

data Z
data S n

infixr 5 Cons’
data Vec n a where
Nil :: Vec Z a
Cons :: a ->Vecna ->Vec (Sn)a

Tuesday, 27 November 12

zipWithV

zipWithV :: (a > b -> ¢c) ->Vecnha->Vecnb ->Vecnc
zipWithV f Nil Nil = Nil
zipWithV f (Cons x xs) (Cons y ys) = f x vy

“Cons

zipWithV f xs ys

Ce—— R————

Annoying thing: GHC won'’t disallow writing this

zipWithV f (Cons x xs) Nil = {- ? -} undefined

...but this will never be executed at run time

Tuesday, 27 November 12

What about other data
types’

eeeeeeeeeeeeeeeeeeee

What about other data
types’

Samehape

Tuesday, 27 November 12

What about other data
types’

Samehape

1*4 + 2*5 + 3*0 = 32

eeeeeeeeeeeeeeeeeeee

zipWith for Trees

Tuesday, 27 November 12

zipWith for Trees

zipWithT f (Leaf a) (Leaf b) = Leaf (f a b)

Tuesday, 27 November 12

zipWith for Trees

zipWithT f (Leaf a) (Leaf b)

zipWithT f (Branch s t) (Branch s'

th)

Leaf (f a b)
Branch (zipWithT f
(zipWithT f

Tuesday, 27 November 12

zipWith for Trees

zipWithT f (Leaf a) (Leaf b)
z1pWithT f (Branch s t) (Branch s' t')

Leaf (f a b)
Branch (zipWithT f s s')
(zipWithT f t t")

zipWithT f (Leaf a) (Branch s' t') {- ? -} undefined

Tuesday, 27 November 12

zipWith for Trees

zipWithT f (Leaf a) (Leaf b)
z1pWithT f (Branch s t) (Branch s' t')

Leaf (f a b)
Branch (zipWithT f s s')
(zipWithT f t t")

zipWithT f (Leaf a) fnch s' t')
zipWithT f (Branch s (Leaf b)

{- ? -} undefined
{- 7 -} undefined

Tuesday, 27 November 12

Shapes

® Use type indexed types. Encode shape of data
structure with GADTs

® Type system ensures that only values of
same shape can be zi1pWithed together

Trees with shapes

data Tree sh a where
Leaf c:a -> Tree () a
Branch :: Tree m a -> Tree n a -> Tree (m,n) a

Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))
1 Tree (O, (0O,0)) Int

Tuesday, 27 November 12

Generalise with

Applicative class

® zipWith is actually liftA2 on ZipList
instance of Applicative class.

* Applicative lifts a value into a fragment of
a larger domain

* Applicative allows you to apply values
from this domain to each other.

® All Monads are Applicatives. Not all
Applicatives are Monads.

class (Functor f) => Applicative f where
pure :: a ->f a
(<*>) :: f (a->b) >fa->fb

Tuesday, 27 November 12

Generalising

zipWith is actually 11ftA2

11ftA2 :: Applicative f = (a ->b ->c¢c) > fa ->f b ->f c

Specialised to trees

LliftA2 :: (a -=> b -> ¢) -> Tree sh a -> Tree sh b -> Tree sh c

LiftA2 (*):: Num a = Tree sh a -> Tree sh a -> Tree sh a

Tuesday, 27 November 12

General result

For a data structure T

I F you can define Foldable and Applicative instances

TH E N you have dot product!

eeeeeeeeeeeeeeeeeeee

Applicative on Irees
with shape

instance Applicative (Tree ()) where
pure a = Leaf a
Leaf fa <*> Leaf a = Leaf (fa a)

instance (Applicative (Tree m), Applicative (Tree n)) =>
Applicative (Tree (m,n)) where
pure a = Branch (pure a) (pure a)
(Branch fs ft) <*> (Branch s t) = Branch (fs <*> s) (ft <*> t)

Tuesday, 27 November 12

Let’s see 1iftA2 (*)
on [rees

eeeeeeeeeeeeeeeeeeee

LiftA2 (*) on lrees

11ftA2 f a b = pure f <*> a <*> b

pure (*) <*> 16\ <*> 4/>\
2 3 5 o

eeeeeeeeeeeeeeeeeeee

LiftA2 (*) on lrees

NN N

GO G

eeeeeeeeeeeeeeeeeeee

LiftA2 (*) on lrees

NN

2*) (3%)

eeeeeeeeeeeeeeeeeeee

LiftA2 (*) on lrees

/N

10 18

eeeeeeeeeeeeeeeeeeee

LiftA2 (*) on lrees

NOW jUSt fold (+) >

over this to get

dot product o 18

eeeeeeeeeeeeeeeeeeee

LiftA2 (*) on lrees

Now just fold (+) m 32

over this to get
dot product

eeeeeeeeeeeeeeeeeeee

Foldable on Trees with
shape

class Foldable t where
fold 2 Monoid m=>tm->m
foldMap :: Monoid m => (a ->m) -> ta ->m

instance Foldable (Tree sh) where
-- foldMap :: Monoid m => (a -> m) -> Tree sh a -> m
foldMap f (Leaf a) =1 a
foldMap f (Branch s t) = foldMap f s mappend foldMap f t

-- fold :: Monoid m => Tree sh m -> m

Tuesday, 27 November 12

Generic dot product

-- Defined in Data.Monoid module
newtype Sum a = Sum { getSum :: a }
deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Sum a) where
mempty = Sum 0
Sum x "mappend Sum y = Sum (X + y)

dot :: (Num a, Foldable f, Applicative f) = f a -> f a -> a
dot x y = foldSum $ 1iftA2 (*) x vy
where foldSum = getSum . fold . fmap Sum

Tuesday, 27 November 12

What is a matrix/?

A collection of collections

[1,2,3] :r Tree (O, (O, O)) (Vec (S (S (5 2))) Integer)

[4,5,6] [7,8,9]

Tuesday, 27 November 12

Generalising
dimensions

For regular matrices dimensions of input matrices
determine dimensions of output matrix

mxn X nxXp = mxp

For generic matrices type and shape of input matrices
determine type and shape of output matrix

Tree sxVecn X Vec nxTree t = Tree sxTree t

Tuesday, 27 November 12

Recap of matrix
multiplication

139 154

eeeeeeeeeeeeeeeeeeee

How it’s done

[]
SRVANVAN

[3,4] [5,6]

[1,2]

Results should be tree of trees

Tuesday, 27 November 12

How it’s done

/\

[7,9] [8,10]
[1,2]

[3,4] [5,6]

Tuesday, 27 November 12

How it’s done

S N ?X ys— fmap (dot x) ys

// /
i/ 3 ;’.,
/ y

[1,2] [7,91 [8,10] ys

/
)lS A
i .
e \
\
//

e o Z
N = : V4 \ 4)
N
. § .
\& ——— /

[3X4:| ,9] [8,10] ‘/ [5,6] [7.9] 8 10) ‘

‘\\:\ '
NN e == \ p
o o \:\ /
'— — S g

Tuesday, 27 November 12

How it’s done

25 28

57 04 89 100

Tuesday, 27 November 12

dot :: (Num a, Foldable f, Applicative f) => f a -> f a -> a
dot x y = foldSum $ 1iftA2 (*) x y
where foldSum = getSum . fold . fmap Sum

transpose :: (Traversable f1l, Applicative f2)
=> f1 (f2 a) -> f2 (fl a)
transpose = sequenceA

mmult :: (Num a, Applicative fl, Applicative f2, Applicative f3,
Traversable fl1l, Traversable f2)
=> f1 (f2 a) -> f2 (f3 a) -> f1 (f3 a)
mmult ml m2 = fmap (flip (fmap . dot) (transpose mZ2)) ml

Tuesday, 27 November 12

DEMO

Tuesday, 27 November 12

