
Generic Matrix
Multiplication

Sean Seefried

Tuesday, 27 November 12

This talk is about generalising
matrix multiplication to other

data structures

Tuesday, 27 November 12

Matrix multiplication

1 2 3
4 5 6

 7 8
 9 10
11 12

=
 58 64
139 154

Tuesday, 27 November 12

Dot products
Take two vectors of length n

u = (u1, ..., un) v = (v1, ..., vn)

u ⋅ v = u1v1 + ... + unvn

u ⋅ v = Σ uivi

n

i = 1

or

Dot product is

Tuesday, 27 November 12

dot :: Num a => [a] -> [a] -> a
dot xs ys = foldl (+) 0 (zipWith (*) xs ys)

Dot product for lists

Tuesday, 27 November 12

Works for lists of different lengths because

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f [] _ = []
zipWith f _ [] = []
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

dot :: Num a => [a] -> [a] -> a
dot xs ys = foldl (+) 0 (zipWith (*) xs ys)

Dot product for lists

Tuesday, 27 November 12

Vectors

data Z
data S n

infixr 5 `Cons`
data Vec n a where
 Nil :: Vec Z a
 Cons :: a -> Vec n a -> Vec (S n) a

Tuesday, 27 November 12

zipWithV

Annoying thing: GHC won’t disallow writing this

...but this will never be executed at run time

zipWithV :: (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c
zipWithV f Nil Nil = Nil
zipWithV f (Cons x xs) (Cons y ys) = f x y
 `Cons`
 zipWithV f xs ys

zipWithV f (Cons x xs) Nil = {- ? -} undefined

Tuesday, 27 November 12

1
2 3

4
5 6

What about other data
types?

Tuesday, 27 November 12

1
2 3

4
5 6

Same shape

What about other data
types?

Tuesday, 27 November 12

1
2 3

4
5 6

1*4 + 2*5 + 3*6 = 32
Same shape

What about other data
types?

Tuesday, 27 November 12

zipWith for Trees

Tuesday, 27 November 12

zipWith for Trees

zipWithT f (Leaf a) (Leaf b) = Leaf (f a b)

Tuesday, 27 November 12

zipWith for Trees

zipWithT f (Leaf a) (Leaf b) = Leaf (f a b)
zipWithT f (Branch s t) (Branch s' t') = Branch (zipWithT f s s')
 (zipWithT f t t')

Tuesday, 27 November 12

zipWith for Trees

zipWithT f (Leaf a) (Leaf b) = Leaf (f a b)
zipWithT f (Branch s t) (Branch s' t') = Branch (zipWithT f s s')
 (zipWithT f t t')

zipWithT f (Leaf a) (Branch s' t') = {- ? -} undefined

Tuesday, 27 November 12

zipWith for Trees

zipWithT f (Leaf a) (Leaf b) = Leaf (f a b)
zipWithT f (Branch s t) (Branch s' t') = Branch (zipWithT f s s')
 (zipWithT f t t')

zipWithT f (Leaf a) (Branch s' t') = {- ? -} undefined
zipWithT f (Branch s t) (Leaf b) = {- ? -} undefined

Tuesday, 27 November 12

Shapes

• Use type indexed types. Encode shape of data
structure with GADTs

• Type system ensures that only values of
same shape can be zipWithed together

Tuesday, 27 November 12

Trees with shapes

data Tree sh a where
 Leaf :: a -> Tree () a
 Branch :: Tree m a -> Tree n a -> Tree (m,n) a

Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))
 :: Tree ((), ((),())) Int

Tuesday, 27 November 12

Generalise with
Applicative class

• zipWith is actually liftA2 on ZipList
instance of Applicative class.

• Applicative lifts a value into a fragment of
a larger domain

• Applicative allows you to apply values
from this domain to each other.

• All Monads are Applicatives. Not all
Applicatives are Monads.

Tuesday, 27 November 12

class (Functor f) => Applicative f where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b

Tuesday, 27 November 12

Generalising
zipWith is actually liftA2

liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c

liftA2 :: (a -> b -> c) -> Tree sh a -> Tree sh b -> Tree sh c

Specialised to trees

liftA2 (*):: Num a => Tree sh a -> Tree sh a -> Tree sh a

Tuesday, 27 November 12

For a data structure T

IF

THEN

you can define Foldable and Applicative instances

you have dot product!

General result

Tuesday, 27 November 12

Applicative on Trees
with shape

instance Applicative (Tree ()) where
 pure a = Leaf a
 Leaf fa <*> Leaf a = Leaf (fa a)

instance (Applicative (Tree m), Applicative (Tree n)) =>
 Applicative (Tree (m,n)) where
 pure a = Branch (pure a) (pure a)
 (Branch fs ft) <*> (Branch s t) = Branch (fs <*> s) (ft <*> t)

Tuesday, 27 November 12

Let’s see liftA2 (*)
on Trees

Tuesday, 27 November 12

1

2 3

4

5 6

<*><*>pure (*)

liftA2 (*) on Trees

liftA2 f a b = pure f <*> a <*> b

Tuesday, 27 November 12

liftA2 (*) on Trees

1

2 3

4

5 6

<*><*>(*)

(*) (*)

Tuesday, 27 November 12

(1*)

(2*) (3*)

4

5 6

<*>

liftA2 (*) on Trees

Tuesday, 27 November 12

4

10 18

liftA2 (*) on Trees

Tuesday, 27 November 12

4

10 18

liftA2 (*) on Trees

Now just fold (+)
over this to get

dot product

Tuesday, 27 November 12

liftA2 (*) on Trees

Now just fold (+)
over this to get

dot product

32

Tuesday, 27 November 12

 Foldable on Trees with
shape

instance Foldable (Tree sh) where
 -- foldMap :: Monoid m => (a -> m) -> Tree sh a -> m
 foldMap f (Leaf a) = f a
 foldMap f (Branch s t) = foldMap f s `mappend` foldMap f t

 -- fold :: Monoid m => Tree sh m -> m

class Foldable t where
 fold :: Monoid m => t m -> m
 foldMap :: Monoid m => (a -> m) -> t a -> m

Tuesday, 27 November 12

dot :: (Num a, Foldable f, Applicative f) => f a -> f a -> a
dot x y = foldSum $ liftA2 (*) x y
 where foldSum = getSum . fold . fmap Sum

Generic dot product
-- Defined in Data.Monoid module
newtype Sum a = Sum { getSum :: a }
 deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Sum a) where
 mempty = Sum 0
 Sum x `mappend` Sum y = Sum (x + y)

Tuesday, 27 November 12

What is a matrix?
A collection of collections

[1,2,3]

[7,8,9][4,5,6]

:: Tree ((), ((), ())) (Vec (S (S (S Z))) Integer)

Tuesday, 27 November 12

Generalising
dimensions

m×n ✕ n×p = m×p

For regular matrices dimensions of input matrices
determine dimensions of output matrix

For generic matrices type and shape of input matrices
determine type and shape of output matrix

Tree s×Vec n ✕ Vec n×Tree t = Tree s×Tree t

Tuesday, 27 November 12

Recap of matrix
multiplication

1 2 3
4 5 6

 7 8
 9 10
11 12

=
 58 64
139 154

Tuesday, 27 November 12

[,]

7 8[1,2]

[5,6][3,4]

╳

How it’s done

Results should be tree of trees

9 10

Tuesday, 27 November 12

How it’s done

[1,2]

[5,6][3,4]

[7,9] [8,10]

Tuesday, 27 November 12

How it’s done

λx ys→ fmap (dot x) ys

[1,2]

[3,4]
[5,6]

x

x x

ys

ys ys[7,9] [8,10]

[7,9] [8,10] [7,9] [8,10]

Tuesday, 27 November 12

How it’s done

25 28

57 64 89 100

Tuesday, 27 November 12

transpose :: (Traversable f1, Applicative f2)
 => f1 (f2 a) -> f2 (f1 a)
transpose = sequenceA

mmult :: (Num a, Applicative f1, Applicative f2, Applicative f3,
 Traversable f1, Traversable f2)
 => f1 (f2 a) -> f2 (f3 a) -> f1 (f3 a)
mmult m1 m2 = fmap (flip (fmap . dot) (transpose m2)) m1

dot :: (Num a, Foldable f, Applicative f) => f a -> f a -> a
dot x y = foldSum $ liftA2 (*) x y
 where foldSum = getSum . fold . fmap Sum

Tuesday, 27 November 12

DEMO

Tuesday, 27 November 12

