A SPECULATIVE PARALLEL DFA MEMBERSHIP TEST FOR MULTICORE, SIMD AND CLOUD COMPUTING ENVIRONMENT

Yousun Ko Yonsei University, The University of Sydney

Membership Test

2

- DFA: Deterministic Finite Automaton
 - Mathematical model of computation to test membership of the regular languages

Membership Test

3

- DFA: Deterministic Finite Automaton
 - Mathematical model of computation to test membership of the regular languages

Applications of DFA

- 4
- Text editing, compiler front-ends, web browsers, scripting languages, file-search, command-processors, databases, internet search engines, computer security, DNA sequence analysis aso...
- □ Why parallelization of DFA membership test is needed?
 - Execution time is originated by transition of states
 - Execution time is proportional to size of input
 - Long input in general
 - 30,000,000 long input for DNA sequences analysis

$$Str = \boxed{\begin{array}{c} a \ a \ a \ a \ a \ a \ b \ b \ c \ c \ c}_{p_0: q_0}$$

$$Str = \frac{\begin{array}{c} q_0 \ q_1 \ q_e \ q_e \ q_e \ q_e}{p_0 : \ q_0} : 12$$

$$Str = \begin{bmatrix} q_0 & q_1 & q_e & q_e & q_e \\ \hline a & a & a & a & a & a & a & b & b & c & c & c \\ p_0 & : & q_0 & \vdots & q_0 \end{bmatrix} : 12$$

$$Str = \begin{array}{c} Chk_0 \\ \hline a & a & a \\ p_0 : q_0 \end{array}$$

$$\begin{array}{c} Chk_1 \\ \hline a & a & a \\ p_1 : \end{array}$$

$$\begin{array}{c} Chk_2 \\ \hline b \ c \ c \ c \\ p_2 : \end{array}$$

$$Str = \begin{bmatrix} q_0 & q_1 & q_e & q_e & q_e \\ \hline a & a & a & a & a & a & a & b & b & c & c & c \\ p_0 & \vdots & q_0 & \vdots & q_0 \end{bmatrix} : 12$$

$$Str = \frac{a \ a \ a \ a}{p_0 : \ q_0}$$

$$\begin{array}{c} Chk_1 \\ \hline a & a & b \\ p_1 : & q_0, q_1 \end{array}$$

$$\begin{array}{c}
Chk_2 \\
\hline b \ c \ c \ c \\
p_2: \ q_0, q_1
\end{array}$$

$$Str = \boxed{\begin{array}{c} a & a & a & a & a & a & b & b & c & c & c \\ p_0 : & q_0 \end{array}} : 12$$

$$Str = \begin{bmatrix} q_0 & q_0 & q_0 & q_0 & q_0 : 4 \\ a & a & a & a \\ p_0 : & q_0 \end{bmatrix} \quad q_1 q_e q_e q_e q_e : 8$$
$$\begin{bmatrix} q_0 & q_0 & q_0 & q_0 & q_0 \\ q_0 & q_0 & q_0 & q_0 & q_0 \\ p_1 : & q_0, q_1 \end{bmatrix} \quad q_1 q_e q_e q_e q_e : 8$$
$$\begin{bmatrix} b & c & c & c \\ p_2 : & q_0, q_1 \end{bmatrix}$$

$$Str = \boxed{\begin{array}{c} a & a & a & a & a & a & a & b & b & c & c & c \\ p_0 : & q_0 \end{array}} : 12$$

$$= \frac{a a a a a a}{p_0: q_0}$$

Str

Satisfying: 1) $l_0 = \mathcal{I} \ l_1 = \mathcal{I} \ l_2$ $(\mathcal{I} = |Q| = 2)$ 2) $l_0 + l_1 + l_2 = 12$ 3) $l_1 = l_2$ $l_0 = 6$ $l_1 = l_2 = 3$

$$egin{array}{c} Chk_1 & \hline oldsymbol{a} & oldsymbol{b} & oldsymbol{p} & \ p_1 : & q_0, q_1 & \ Chk_2 & \hline oldsymbol{c} & oldsymbol{c} & oldsymbol{c} & \ oldsymbol{c} & oldsymbol{c} & oldsymbol{c} & \ oldsymbo$$

$$p_2: q_0, q_1$$

1) $l_0 = \mathcal{I} \ l_1 = \mathcal{I} \ l_2 \qquad (\mathcal{I} = |Q| = 2)$

$$Str = \begin{bmatrix} q_0 & q_$$

11

 $l_1 = l_2 = 3$

2) $l_0 + l_1 + l_2 = 12$

Satisfying:

3) $l_1 = l_2$

 $l_0 = 6$

Optimization: Reverse Lookahead

12

Not all the states are candidates of initial possible states.

Optimization: Reverse Lookahead

13

Not all the states are candidates of initial possible states.

Optimization: Reverse Lookahead

14

- Not all the states are candidates of initial possible states.
- More reverse lookahead symbols for smaller \mathcal{I}

Speculation

15

□ What is the **expected** number of possible initial states?

$\mathcal{S}_a = \{q_1, q_2, q_3\}$	$\mathcal{S}_b = \{$	$\{q_3\}$
-------------------------------------	----------------------	-----------

$$\mathcal{I}_{min} \leq \mathcal{I} \leq \mathcal{I}_{max} \qquad \begin{array}{l} \mathcal{I}_{min} = min(|\mathcal{S}_a|, |\mathcal{S}_b|) \\ \mathcal{I}_{max} = max(|\mathcal{S}_a|, |\mathcal{S}_b|) \end{array}$$

Optimistic Speculation

Safe Speculation

Speculation

16

□ What is the **expected** number of possible initial states?

Speculation

17

□ What is the **expected** number of possible initial states?

18

$$\mathcal{L}_i = [l_0, l_1, \dots, l_{|Q|-1}],$$

where $0 \leq i < |P|$ and $l_j \in Q$ for all $0 \leq j < |Q|$

$$Str = \begin{bmatrix} q_0 & q_0 & q_0 & q_0 & q_0 & q_0 \\ a & a & a & a & a \\ p_0 & \vdots & q_0 \end{bmatrix} \qquad \mathcal{L}_0 = [0, \phi, \phi]$$

$$\begin{bmatrix} q_0 & q_0 & q_1 & q_1 & q_1 & q_0 & q_0 \\ \hline a & b & b \\ p_1 & \vdots & q_0, q_1 \end{bmatrix} \qquad \mathcal{L}_1 = [1, 0, \phi]$$

$$\begin{bmatrix} q_0 & q_e & q_e & q_e & q_1 & q_1 & q_1 & q_0 \\ \hline c & c & c & p_2 & \vdots & q_0, q_1 \end{bmatrix} \qquad \mathcal{L}_2 = [\phi, 0, \phi]$$

19

$$\mathcal{L}_i = [l_0, l_1, \dots, l_{|Q|-1}],$$

where $0 \leq i < |P|$ and $l_j \in Q$ for all $0 \leq j < |Q|$

20

$$\mathcal{L}_i = [l_0, l_1, \dots, l_{|Q|-1}],$$

where $0 \leq i < |P|$ and $l_j \in Q$ for all $0 \leq j < |Q|$

Parallel Merging

21

$$\mathcal{L}_i = [l_0, l_1, \dots, l_{|Q|-1}],$$

where $0 \leq i < |P|$ and $l_j \in Q$ for all $0 \leq j < |Q|$

Parallel Merging

$$Str = \begin{bmatrix} q_0 & q_0 & q_0 & q_0 & q_0 & q_0 \\ a & a & a & a & a \\ p_0 : & q_0 \\ \hline q_0 & q_0 & q_1 & q_1 \\ q_0 & q_0 & q_1 & q_1 \\ q_0 & q_e & q_e & q_e \\ \hline c & c & c \\ p_2 : & q_0, q_1 \end{bmatrix} \mathcal{L}_{1,2} = \begin{bmatrix} 0 & \phi, \phi \end{bmatrix}$$

Time Complexity

22

$$\mathcal{O}(\frac{nm}{m+p}),$$

where n = |Str|, p = |P| and m is either |Q| or \mathcal{I} .

Experiments: H/W Overview

- Shared-memory multicore
 - Intel Manycore Testing Lab (MTL): 4CPUs × 10 cores/CPU = 40 cores
- SIMD (Single Instruction Multiple Data)
 - AVX2 instruction set extension (8-fold vectorization)

- Cluster Computing Environment
 - Amazon Elastic Cluster Computing (EC2) Environment
 - 288 cores

Experiments: Benchmarks

- 299 PCRE (Perl-compatible Regular Expression) RE patterns
- 110 PROSITE protein patterns
- 1MB long input
 - Longer input results better performance!

Reverse Lookahead Symbols

25

(a) PCRE

(b) PROSITE

r	0	1	2	3	4
PCRE	100%	33.7%	26.4%	23.7%	21.7%
PROSITE	100%	47.2%	29.2%	20.5%	16.0%

Shared-Memory Multicore

(a) Speedup without optimization for (b) Speedup with optimization for PCRE PCRE

Shared-Memory Multicore

(a) Speedup over ScanProsite

(b) Speedup over the UNIX grep utility

SIMD

28

(a) Speedup without AVX2 on PCRE

(b) Speedup with AVX2 on PCRE

Cloud Computing Environment

(a) Speedup without MPI communication (b) Speedup with MPI communication cost on PCRE

cost on PCRE

Thanks!