Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

SD

Fault Tolerance Experiments Conclusions

Fault Tolerance for Synchronous Streaming Programs

Nic Hollingum Andrew Santosa Bernhard Scholz

USYD

2012

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

SDI

Fault Tolerance Experiments Conclusions

SDF

Fault Tolerance

Experiments

Conclusions

Dataflow

Computational model [3]

- No (or limited) main-memory
- Communicating processes
- Data filters
- Also hardware implementations [2]

Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

SDF

Fault Tolerance Experiments Conclusions

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Actors, Channels & Tokens

- Data sent around network as tokens
- Computational units, *actors*, process tokens and output new ones
- Tokens sent between actors via FIFO buffers called channels
- All token production rates known statically
- Compute Steady State Schedule, delays have no change
- Schedule synchronises actor executions

Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

SDF

Fault Tolerance Experiments Conclusions

・ロト・西ト・西ト・ 日・ うらの

Processor Faults

- Running SDF programs on real computers
- One node failure every 100 hours [4]
- MapReduce [1]
 - Well known cloud service
 - Explicit fault-tolerance mechanisms
 - Survives worker faults, not master faults
- Fault tolerance necessary to make stream paradigm available as a service

Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

SDI

Replication

Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

SDI

Fault Tolerance Experiments Conclusions

・ロト・「聞」・「思ト・「思ト・・ヨー・シックシー

Checkpointing

Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

SDI

Fault Tolerance Experiments Conclusions

Dynamic-Switching

Hybrid

- Replicate: two distinct graphs
- Checkpoint: in-memory state history
- No communication between graph sides
- Actors have partners
- Synchronise to prevent unbounded memory

Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

SD

Dynamic-Switching, Failure

Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

SDI

- TCP timeout
- Parents stop sending data
- Partners buffer tokens
- Token Requests

Dynamic-Switching, Recovery

Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

SD

- Re-connect lost channels
- Partner recovery protocol
 - send missing tokens
 - send channel configuration
 - adopt partner's state
 - block during recovery
- Available for reconnection

Experimentation

► Faults

- Single, Distinct, Overlapping
- Instant-half, Staggered-half
- Software
 - Java Open JDK 1.6
 - TCP/IP socket implementation
 - LAN configurable
 - StreamIt [5] benchmarks
 - Simulator
- Hardware
 - 20 low-end computers
 - Core2 duo E8400 2x3.0Ghz, 4GB RAM
 - Gigabit Ethernet

Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

SDF

ault Tolerance

Experiments

Conclusions

・ロト・日本・山田・ 山田・ 山田・

Resilience

Nic Hollingum Andrew Santosa Bernhard Scholz

- Successful completions, dynamic vs. checkpointing
- Overlapping faults show difference

Overhead

Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

SDF Fault Tolerance Experiments

- Throughput, dynamic vs. checkpointing
- Dynamic has minimal falloff

Synchrony

Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

Fault Tolerance Experiments

Conclusions

- Overheads Memory bounding
- Wasting time blocking for catchup

Conclusion

- SDF paradigm suited to HPC
- Exploit unique properties of SDF for fault tolerance
- Develop distributed algorithms providing fault tolerance
- Examine on real hardware

Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

Experiments

Conclusions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

References I

J. Dean and S. Ghemawat.

MapReduce: Simplified data processing on large clusters.

Comm. ACM, 51(1):107–113, 2008.

- J.R. Gurd, C.C. Kirkham, and I. Watson. The manchester prototype dataflow computer. *Comm. ACM*, 28(1):34–52, 1985.
- Richard M. Karp and Raymond E. Miller.
 Properties of a model for parallel computations:
 Determinancy, termination, queueing.
 SIAM Journal on Applied Mathematics, 14(6):1390–1411, 1966.

Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

SDI

References II

Daniel A. Reed, Charng da Lu, and Celso L. Mendes. Reliability challenges in large systems. *Future Generation Computer Systems*, 22(3):293–302, 2006.

W. Thies and S. Amarasinghe.

An empirical characterization of stream programs and its implications for language and compiler design. In *19th PACT*, pages 365–376. ACM, 2010.

Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

SDI

Contributions

Fault Tolerant Algorithms

- Replication
- Checkpointing
- Dynamic Switching
- Experimental analysis
 - Checkpointing more resilient when faults overlap
 - Dynamic Switching more consistent throughput
 - Make throughput / memory-footprint tradeoff

Fault Tolerance

Nic Hollingum Andrew Santosa Bernhard Scholz

SDI

Fault Tolerance Experiments

Conclusions

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ