

Tolerating Holes in Wearable Memories

Tiejun Gao¹, Stephen M Blackburn¹, Karin Strauss², Kathryn McKinley², Jim Larus², Doug Burger²

1: The Australian National University 2: Microsoft Research

Background: Wearable Memory

DRAM

- · Demands for higher capacity and lower cost
- The trend may be broken in the near future

DRAM Density Trend

Price per bit Trend

DRAM

Charge-based volatile memory

Problems

- Charge leakage
- Cosmic particle hitting
- High refresh rate

Alternatives to DRAM

- Resistive memories
 - Non-volatile
 - Stable
 - Low refresh rate
- Different material system
 - Binary transition metal oxides
 - Solid-state electrolytes
 - Phase change chalcogenides

Phase Change Memory (PCM)

- Non-volatile resistive memory
- Switching by heating using electrical pulses

- Typical write limit: PCM 10⁸, DRAM 10¹⁵
- PCM line (64B)
- Hardware error correction mechanism

Tolerating Holes in Wearable Memories | Gao, Blackburn, Strauss, McKinley, Larus & Burger

Problem and opportunity

- Current Memory Failure Model
 - Discard entire page for one failed line (98% of the memory is wasted)
 - Pages die very fast when hardware error correction resources run out.
 - Fewer surviving pages support more writes
- How about we use the failed pages?

Failures are exposed to applications

- Live data should never occupy failed memory
 - Code and data segment
 - Heap
- Significant changes needed for native program

Managed runtime

- Safe pointer discipline
 References, not addresses
- Dynamic compilers
 - Lay out code around failures
- Garbage collection
 - Move data transparently and correctly
- No change is needed for applications

Background: Immix in JikesRVM

Immix algorithm in JikesRVM

- Different granularities
 - Coarse block (32KB) and fine line (256B)
- Good space efficiency, collection time and locality
 - Bump pointer allocation in blocks
 - Linearly scan the line map and identify free and partially free blocks
 - Utilize recyclable blocks

How Immix works

Global Free Blocks Allocator

Freshly allocated *IIIII* Live: marked in previous collection

Immix algorithm in JikesRVM

Tolerating Holes in Wearable Memories | Gao, Blackburn, Strauss, McKinley, Larus & Burger

Failure-aware Memory Management

Hardware and OS support

- Hardware support
 - Interrupt CPU to inform software of failures
 - Maintain correct data in failure buffer
- Operating System
 - Both PCM and DRAM are in use
 - Notify applications when failures occur
 - Replace faulty pages

Static and dynamic failures

- Static failure
 - Known and recorded when VM starts
 - Regarded as used immix lines
- Dynamic failure
 - Trigger a full GC
 - Copy affected objects
 - Update the failure map
 - Use perfect pages if necessary.

Freshly allocated IIII Live: marked in previous collection

Influence of failures

Memory loss

Influence of failures

Fragmentation

Influence of failures

• Fragmentation

Influence of failures

• Failure Cluster

Failure Cluster Hardware Mechanism

Performance with failure cluster

Performance with failure cluster

- A cooperative hardware/software system with low complexity that mitigates failures in wearable memories
- Wear leveling can be detrimental when errors have to be exposed to software
- Failure-aware managed runtime can benefit from wear-unleveling

Thank you

Tolerating Holes in Wearable Memories | Gao, Blackburn, Strauss, McKinley, Larus & Burger