
Communication Aware Actor Allocation of

Stream Programs

Vitaly Nikolenko vitaly.nikolenko@sydney.edu.au,
S.M. Farhad smfarhad@it.usyd.edu.au,

Bernhard Scholz bernhard.scholz@sydney.edu.au

October 16, 2012

Abstract

Sequential programming languages are not well-suited for multi-cores, providing
insufficient parallel hardware abstraction, which greatly hampers performance
and portability of software on multi/many-core architectures. It is left to the
programmer to identify parallelism in programs, which is tedious and error-
prone. This problem is paraphrased by the term “The Parallel Programming
Gap”, expressing the steady increase in number of cores in processors over time,
and the slow adoption of new programming models to harvest effectively the
computational power of parallel cores.

Stream programming is a parallel paradigm that allows to express data and
task parallelism in a natural and intuitive way. It is used in applications that
deal with regular sequences of data such as multimedia, graphics, signal process-
ing and networking applications. In the stream programming model, computa-
tions are expressed by a collection of actors that are connected by data channels.
A major challenge with stream programs is to load-balance actors among avail-
able processor cores. Even without considering communication costs of data
channels, the problem is known to be NP-hard.

In this talk, we present an approximation algorithm for placing stream pro-
grams on processor cores that takes communication costs of data channels into
account. Unlike load-balancing heuristics, our approximation algorithm runs in
polynomial time with solutions within a factor of log2 n of the optimal solution,
where n is the number of actors in a stream program. We conduct experiments
across a range of StreamIt benchmarks and demonstrate that the observed ap-
proximation ratio of an instance is less than or equal to 2.

1


