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Introduction

Scripting Languages are Widely Used

Scripting languages provide
• simple access to powerful libraries
• end user programmability

(simple concepts, dynamicity)
• quick combination of scripts
• quick development and evolution

Research Question
• What does it take to write and maintain reliable

programs in a scripting language?
• What tools are useful?
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• Not supported by a structured namespace . . .



Introduction

Typical Scenario: Program Maintenance

• Programmer inherits reams of JavaScript code
• Task

• Change / extend existing functionality
• Implement a new feature
• Fix a bug

• Not supported by a structured namespace . . .



Introduction

Maintenance Questions
Program Understanding: Exploring Operations

• What is the public interface?
• What are the signatures?
• What changes are inflicted on the object graph?
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Scenarios
Specification Levels for an Operation

1. The programmer provides the code
2. The programmer provides a type signature
3. The programmer provides a type signature

with effects
4. The programmer provides a full specification
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JSConTest:
Tool Support for Partial Specifications

Overview

• Type signatures and contracts for JavaScript
with monitoring and random testing

• Effects for JavaScript:
access permission contracts

• Effect inference
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Type Signatures and Contracts

1 /∗c int→ int ∗/
2 function f(x) { return 2 ∗ x; };
3

4 /∗c (int,int)→ boolean ∗/
5 function p(x,y) {
6 if (x != y) {
7 if (f(x) == x + 10) return ”false”; // contract violation
8 };
9 return true;
10 };

• contracts are checked / monitored at run time
• violations are flagged, e.g., if f or p is called on

non-integer argument or if p does not return a
boolean.
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Object Types

An object type having at least the properties width, height,
and background.

1 /∗c ({width: int, height: int; background: string})→ undefined ∗/
2 function createCanvas(arg) {
3 ... arg.width ∗ arg.height ∗ screen.DEPTH ...
4 }

Method type where receiver type must have two integer
properties, x and y.

1 /∗c {x: int, y: int}.(int, int)→ boolean ∗/
2 Frame.prototype.layout = function (width, height) {
3 ... this.x ... this.y ...
4 }
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Random Testing from Type Contracts

• Observation (QuickCheck): Types are a good basis
for generating random test data

• Type contracts are just as good
• Contracts in negative positions serve as generators;

contracts in positive positions serve as checkers
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Example for Random Testing

1 /∗c (int,int)→ bool ∗/
2 function p(x,y) {
3 if (x != y) {
4 if (f(x) == x + 10) return ”false”; // contract violation
5 };
6 return true;
7 };

For testing this function, the context needs to provide a
pair of integers and needs to check the return value for a
boolean.

Pitfall
What is the probability that random testing finds the
problem?
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Pitfall for Random Testing

1 /∗c (int,int)→ bool ∗/
2 function p(x,y) {
3 if (x != y) {
4 if (f(x) == x + 10) return ”false”; // contract violation
5 };
6 return true;
7 };

• random generator for int uniformly distributed
⇒ P(x = 10) ≈ 2−32

⇒ uniformly distributed generators are not always a
good choice
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Guided Random Testing

1 /∗c (int@numbers,int)→ bool ∗/
2 function p(x,y) {
3 if (x != y) {
4 if (f(x) == x + 10) return ”false”; // contract violation
5 };
6 return true;
7 };

Annotate the int contract with @numbers.

⇒ Changes the probability distribution
⇒ Generates random expressions with numbers from

the source program
⇒ Usually locates the violation in less than 10 test runs
⇒ Highly effective also for more complicated conditions
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Guided Contract for Objects
1 /∗c (object@labels)→ bool ∗/
2 function h(x) {
3 if (x && x.p && x.quest)
4 return ”false”; // contract violation
5 return true;
6 };

• Random generation of objects; presence of particular
labels unlikely

• Annotation @labels

• Generator prefers to use the labels inside of the
function body

⇒ Raises probability to generate a property with names
p or quest; locates the violation
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Effects: Access Permission Contracts
• Type contracts are not sufficiently expressive
• Effect of operation describes the locations read and

written by it
• Expressed by access permission contract

Access Permission
• Abstraction of a set of access paths
• Syntax: file path with wildcards, components are

property names

. . . Contract
• comes with dynamic monitoring
• see http://proglang.informatik.
uni-freiburg.de/jscontest/

http://proglang.informatik.uni-freiburg.de/jscontest/
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Example: Add Node to Singly-Linked List
How does this operation affect the object graph?

1 function add(data) {
2 var node = {data: data, next: null}, current;
3 if (this. head === null) {
4 this. head = node;
5 } else {
6 current = this. head;
7 while(current.next) { current = current.next; }
8 current.next = node;
9 }
10 this. length++;
11 }

• Reads and writes this. head and this. length.
• Reads this. head.next...next and writes the last next property
• Does not access the data argument
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Example with Access Permission Contract

1 /∗c {}.(any)→ undefined
2 with [this. head, this. head.next∗.next, this. length] ∗/
3 function add(data) {
4 var node = {data: data, next: null}, current;
5 if (this. head === null) {
6 this. head = node;
7 } else {
8 current = this. head;
9 while(current.next) { current = current.next; }
10 current.next = node;
11 }
12 this. length++;
13 }
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Effects for Singly-Linked List Library
• add(data):

this. head, this. head.next∗.next, this. length

• item(index):
this. length.@, this. head.next∗.next.@,
this. head.next∗.data.@

• remove(index):
this. head.next∗.data.@, this. head.next∗.next,
this. length

• size():
this. length.@

• toArray():
this. head.next∗.next.@

• toString():
this. head.next∗.next.@
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Syntax of Access Permissions

P ⊆ Prop, p ∈ Prop properties

b ::= ε | P.b | P ∗ .b path permissions
a ::= ∅ | b | a + a access permissions

π ::= ε | p.π access paths
γ ::= R |W access classifiers
κ ::= γ(π) classified access paths

? = Prop, @ = ∅ ⊆ Prop
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Path Semantics of Access Permissions
γ(π) ≺ a path γ(π) matches permission a

W(ε) ≺ ε R(ε) ≺ b

γ(π) ≺ b p ∈ P
γ(p.π) ≺ P.b

γ(π) ≺ b
γ(π) ≺ P ∗ .b

γ(π) ≺ P ∗ .b p ∈ P
γ(p.π) ≺ P ∗ .b

κ ≺ a1

κ ≺ a1 + a2

κ ≺ a2

κ ≺ a1 + a2

(∀κ ∈ K ) κ ≺ a
K ≺ a
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Examples

• W(this.head) ≺ this.head
• W(this.length) 6≺ this.length.@ because W(ε) 6≺@
• R(this.length) ≺ this.length.@ because R(ε) ≺@
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Properties

1. If R(π.p) ≺ a, then R(π) ≺ a
Read permissions are closed under prefix.

2. If W(π.p) ≺ a, then R(π) ≺ a
The initial segment of a write permission yields read
permission.

3. W(π) 6≺ b.@
A path permission ending in @ indicates read-only
access.
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All Settled?

• At this point, the issue seems settled.
• The semantics of an access path seems obvious and

intuitive.
• Is it?
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Interpretation of Paths

1 /∗c (obj, obj)→ any with [x.b,y.a] ∗/
2 function h(x, y) {
3 y.a = 1;
4 y.b = 2; // violation?
5 }
6 // entry point #1
7 function h1() {
8 var o = { a: −1, b: −2 };
9 h(o, o);
10 }
11 // entry point #2
12 function h2() {
13 h({ a: −1, b: −2 }, { a: −1, b: −2 });
14 }



Introduction

Design Space for Semantics I

Path-dependent access
vs.

Location-dependent access
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Path-Dependent Access

An access permission grants the right to read or
modify a property of an object depending on the
actual traversal path through which the object
has been reached.

⇒ For each access, there is a unique path that
determines the access rights.

⇒ h1() and h2() both lead to violation
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Location-Dependent Access

An access permission attaches the right to read
or modify a property of an object to its location.

⇒ For each access, there may be a number of paths in
the permission that contribute to the access rights.

⇒ h1() is accepted because y.b is an alias of x.b, but h2()
leads to a violation.

⇒ Violation is not stable
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Design Space for Semantics, II

Dynamic Extent
vs.

Lexical Extent
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Example I

1 /∗c (obj)→ any with [x.a] ∗/
2 function d1(x) {
3 return x.a; // violation if called from d2
4 }
5 /∗c (obj)→ any with [] ∗/
6 function d2(x) {
7 return d1(x);
8 }

• dynamic extent: the restriction imposed by contract
on d2 carries over to d1

• lexical extent: ?
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Example II
1 /∗c (obj)→ (()→ any) with [x.b] ∗/
2 function f(x) {
3 return function() { return x.a + ” ” + x.b; };
4 }
5 function f1() {
6 var r = f({ a: ”secret”, b: ”revealed” });
7 return r();
8 }

• dynamic extent: no violation
• lexical extent: reading x.a triggers violation
• If x.a should not be read, this contract is more

appropriate
1 /∗c (obj)→ (()→ any with [x.b]) with [x.b] ∗/
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Example II
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Design Space for Semantics, III

Pre-State Snapshot
An access permission only applies to objects
and paths in the heap at the time when the
contract is installed.
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Alternatives to Pre-State Snapshot?

Candidates for Reference Heaps

• pre-state
consistent with verification approaches (precondition)

• current state
“symbolic” interpretation of access paths

• post-state
???
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Symbolic Interpretation of Access Paths

1 /∗c (obj, obj)→ any with [x.a, y.a, y.a.b] ∗/
2 function b(x, y) {
3 y.a = x.a;
4 y.a.b = 42; // allowed?
5 }

• Expectation: x.a.b does not change
• Admitted by symbolic interpretation: inconsistent with

verification
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Design Space for Semantics, IV

Sticky Update

A property assignment keeps the access paths
of the value on its right-hand side.
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Consequence of Sticky Update

1 /∗c (obj)→ any with [x.a,x.b.a] ∗/
2 function l(x) {
3 x.a = x.b;
4 x.a.a = 42;
5 }
6 function l1() {
7 var x = { a: {}, b: {}};
8 l(x);
9 }

Is there a violation?
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Design Choices in JSContest

Objective: Partial Specifications

• Path-dependent access
• Dynamic extent
• Pre-state snapshot
• Sticky update

Choices consistent with static analysis (effect systems)
and static verification (c.f. dynamic frame rule by Smans
et al)
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Alternative Design Choices

Objective: Security
Different choices seem advantageous
• location-based semantics
• lexical extent (?)
• access restrictions instead of permissions

i.e., guarantee no access to window.location



Introduction

Side Remark: Efficiency

Path-Dependent Access

• references need to be paired with path information
• checking a permission: O(]installed permissions)
• installing a permission: O(1)

Location-Dependent Access

• separate data structure for rights management
• checking: O(1)

• installing a permission: (multiple) heap traversals;
does that amortize?
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Technical Development

Big-step evaluation judgment

ρ,R,W ` H; u; e ↪→ H ′; u′; v

• ρ environment
• R,W read and write permissions
• H, H ′ heap
• u, u′ timp stamp
• e expression
• v return value
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Two rules

PERMIT
ρ′,R[u 7→ Lr ],W[u 7→ Lw ] ` H; u + 1; e ↪→ H ′; u′; v

ρ′ = ρ[x 7→ ρ(x) � [u 7→ ε]]

ρ,R,W ` H; u;permit x : Lr ,Lw ine ↪→ H ′; u′; v

GET
ρ,R,W ` H; u; e ↪→ H ′; u′; (`,M) R c̀hk M.p
ρ,R,W ` H; u; e.p ↪→ H ′; u′;M.p < H ′(`)(p)
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Theorem: Soundness

• Reference value ::= Location × PMap
• PMap ::= Stamp→ AccessPath

Theorem
For each reference value, the access path information is
correct with respect to its corresponding pre-state heap.
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Theorem: Stability of Violation

• If running a program on a given heap raises a
violation, then it also raises a violation on a heap in
which more locations are aliased.

• If running a program produces a result on a given
heap, then it also produces a result on a heap with
less aliasing.

∗ Unless the program depends on an update to a
shared object.
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Theorem: Completeness

All accesses through a variable with an access
permission contract can only occur via permitted paths.
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Implementation

• By transformation of JavaScript code
• Slowdown by a factor of 4–4.4
• Problems: Interfacing with non-transformed code

(e.g., library code)
• Large subset of JavaScript supported
• Exceptions: prototype accesses, with statements, eval

• Goal: implementation in browser / JavaScript engine
evades these problems
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Evaluation

• Question: effectiveness of access permissions for
detecting programming errors

• Method
• Hand-annotated code run with monitoring
• Random code modifications
• Check if modifications detected
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Singly-Linked Lists: 6.4% More Errors
Detected

type type+effect
fulfilled contracts 1011 18.0 % 711 12.7 %
rejected contracts 4607 82.0 % 4907 87.3 %
reason for rejection (a mutant may be counted multiple times)
type contract failure 2020 43.9 % 1643 33.5 %
signaled error 2034 44.1 % 2136 43.5 %
browser timeout 553 12.0 % 243 5.0 %
read violation - 0.0 % 1018 20.7 %
write violation - 0.0 % 1606 32.7 %
read/write violation - 0.0 % 1842 37.5 %
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Richards Benchmark: 13% More Errors
Detected

type type + effect
fulfilled contracts 1148 38.9% 911 30.8%
rejected contracts 1807 61.1% 2044 69.2%
reason for rejection (a mutant may be counted multiple times)
type contract failure 872 48.3% 866 42.4%
signaled error 1052 58.2% 1037 50.7%
browser timeout 28 1.5% 30 1.5%
read violation 0 0.0% 202 9.9%
write violation 0 0.0% 149 7.4%
read/write violation 0 0.0% 349 17.1%
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Effect Inference

• Where do effects come from?
• For program understand, an automated approach is

advantageous.
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Sampling

• Program run of a JavaScript program→ list of
classified access paths

• Example (for add, typically several 1000):
R(_head)
R(_head)
R(_head.next)
R(_head.next)
R(_head.next.next)
R(_head.next.next)
R(_head.next.next.next)
W(_head.next.next.next)
R(_length)
W(_length)
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Example: Structure Derived from Effects

this
_length

_head data

next data

next data

next
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Implementation of Sampling

• Source-to-source transformation of the JavaScript
program

• Instruments each property read and write operation
• Annotates objects with path information (anchor and

access path)
• Implemented using wrapper objects
• Path set stored in a trie

this
_length

_head next next next
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Hypothesis of the heuristic

Intuition drawn from list and tree datatypes

Hypothesis
Permissions have one of the forms
• p1 . . . pn.P∗.q1 . . . qm

• p1 . . . pn

for property names pi and qj and a property set P.

Need to identify . . .

• common prefixes
• set of middle properties
• common suffixes
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Overall inference algorithm
Only for read paths

Input Πr set of all read paths
— Determine interesting prefixes

Πr
0 ← Prefixes(Πr )

— Infer permissions
R ← Permissions(Reduct(Πr

0),Πr , sl , sd)
— Simplify permissions

Simplify(R)
Output R.@
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Interesting Prefixes
Recall the read paths of the add example:

R(_head)
R(_head.next)
R(_head.next.next)
R(_head.next.next.next)
R(_length)

The interesting prefixes are _head and _length. Why?

A prefix is interesting if . . .

• traversing it changes the set of accessible symbols
• extending it does not change the set of accessible

symbols
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Determining Interesting Prefixes

Prefix: ε
this

_length

_head next next next

Accessible symbols: _head, _length, next

Prefix: length
this

_length

_head next next next

Accessible symbols: ∅

Prefix: head
this

_length

_head next next next

Accessible symbols next
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From Interesting Prefix to Permission

• Interesting prefixes partition the set of paths Πr

• For each prefix π determine a permission by
extending from the 1-suffixes of the quotient π \ Πr

• length \ Πr = {ε}
yields permission length

• head\Πr = {ε,next,next.next,next.next.next}
yields permissions head and head.next∗.next

• Simplification and making readonly yields
length.@ and head.next∗.@
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Papers
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Conclusions
• JsConTest: Contracts and random testing for JS
• Access permission contracts extend the scope of

contracts and monitoring to side effects
• Access permissions fit in with static verification
• Inference of contracts for program understanding

Future Work
• Browser instrumentation
• Investigate completeness of inference
• Location-dependent access for security

http://proglang.informatik.
uni-freiburg.de/jscontest/
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Further Examples
• Layout computation

/∗c {}.(int, int)→ boolean with [this.x, this.y, this.w, this.h] ∗/
Frame.prototype.layout = function (width, height) { ... }

• Objects may be used for keyword parameters:
c = createCanvas({width: 100, height: 200, background: ”green”});

The parameter object should be read-only:
/∗c ({})→ undefined with [$1.∗.@] ∗/

• Observer pattern
/∗c ({})→ any with [$1.state.∗.?] ∗/
Observer.prototype.update =

function (subject) {... subject.state.value = ...}

• Forbid access to a specific property
/∗c ... with [window./ˆ((?!status).)/] ∗/
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