Access Permission Contracts for
Scripting Languages

Annette Bieniusa, Phillip Heidegger, Peter Thiemann

University of Freiburg, Germany

18 November 2011

Introduction
@00

Scripting Languages are Widely Used

Scripting languages provide
e simple access to powerful libraries .
o end user programmability " %fa%“
(simple concepts, dynamicity)
e quick combination of scripts
e quick development and evolution

Introduction
@00

Scripting Languages are Widely Used

Scripting languages provide
e simple access to powerful libraries
e end user programmability
(simple concepts, dynamicity)
e quick combination of scripts
e quick development and evolution

Research Question

e What does it take to write and maintain reliable
programs in a scripting language?
e What tools are useful?

Introduction
ceo

Our Specimen: JavaScript

JavaScript is the language of the Web

XS J%E
JavaScript

Introduction
ceo

Our Specimen: JavaScript

JavaScript is the language of the Web

]a\%aScnpt

Introduction
ooe

Typical Scenario: Program Maintenance

e Programmer inherits reams of JavaScript code
e Task
e Change / extend existing functionality

e Implement a new feature
e Fix a bug

Introduction
ooe

Typical Scenario: Program Maintenance

e Programmer inherits reams of JavaScript code
e Task

e Change / extend existing functionality
e Implement a new feature
e Fix a bug

¢ Not supported by a structured namespace ...

Introduction
000

Maintenance Questions

Program Understanding: Exploring Operations

e What is the public interface?
e What are the signatures?
e What changes are inflicted on the object graph?

Introduction
000

Scenarios

Specification Levels for an Operation

1. The programmer provides the code
2. The programmer provides a type signature

3. The programmer provides a type signature
with effects

4. The programmer provides a full specification

Introduction
000

JSConTest:
Tool Support for Partial Specifications

Overview
« Type signatures and contracts for JavaScript
with monitoring and random testing

« Effects for JavaScript:
access permission contracts

» Effect inference

Introduction

Type Signatures and Contracts

function f(x) { return 2 % x; };

if (x I=y) {
if (f(x) == x + 10) return "false”; // contract violation

b

1
2
3
4
s function p(x,y) {
6
7
8
o return true;

e contracts are checked / monitored at run time

e violations are flagged, e.g., if f or p is called on
non-integer argument or if p does not return a
boolean.

Object Types

An object type having at least the properties width, height,
and background.

2 function createCanvas(arg) {
s ...arg.width % arg.height « screen.DEPTH ...

-}

Object Types

An object type having at least the properties width, height,
and background.

function createCanvas(arg) {
... arg.width % arg.height « screen.DEPTH ...

}

=W N e

Method type where receiver type must have two integer
properties, x and y.

> Frame.prototype.layout = function (width, height) {
3 ... thisx ... this.y ...

s}

Introduction
000

Random Testing from Type Contracts

e Observation (QuickCheck): Types are a good basis
for generating random test data

Random Testing from Type Contracts

e Observation (QuickCheck): Types are a good basis
for generating random test data

e Type contracts are just as good

e Contracts in negative positions serve as generators;
contracts in positive positions serve as checkers

Introduction

Example for Random Testing

function p(x,y) {

if (x !=y) {
if (f(x) == x + 10) return "false”; // contract violation

1

return true;
b
For testing this function, the context needs to provide a
pair of integers and needs to check the return value for a
boolean.

R B N N

R B N N

Example for Random Testing

function p(x,y) {

if (x !=y) {
if (f(x) == x + 10) return "false”; // contract violation

1

return true;
b
For testing this function, the context needs to provide a
pair of integers and needs to check the return value for a
boolean.

Pitfall
What is the probability that random testing finds the
problem?

Introduction

Pitfall for Random Testing

function p(x,y) {

if (x I=y) {
if (f(x) == x + 10) return "false”; // contract violation

b

return true;

b

a4 o s W N e

e random generator for int uniformly distributed
= P(x=10)~ 2%
= uniformly distributed generators are not always a
good choice

Introduction
000

Guided Random Testing

1 /xC (int@numbers,int) — bool */
2 function p(x,y) {

if (x!=y){
if (f(x) == x + 10) return false”; // contract violation

|8

return true;
1
Annotate the int contract with @numbers.

~ o s W

e R B S U R

Guided Random Testing

function p(x,y) {

it (x I=y) {
if (f(x) == x + 10) return false”; // contract violation

|8

return true;
b
Annotate the int contract with @numbers.
= Changes the probability distribution

= Generates random expressions with numbers from
the source program

= Usually locates the violation in less than 10 test runs
= Highly effective also for more complicated conditions

Introduction
000

Guided Contract for Objects

function h(x) {
if (x && x.p && x.quest)
return false”; // contract violation
return true;

b

L S B N O N

e Random generation of objects; presence of particular
labels unlikely

L S B N O N

Guided Contract for Objects

function h(x) {
if (x && x.p && x.quest)
return false”; // contract violation
return true;

h
e Random generation of objects; presence of particular
labels unlikely

e Annotation @labels
e Generator prefers to use the labels inside of the
function body
= Raises probability to generate a property with names
p Or quest; locates the violation

Effects: Access Permission Contracts

e Type contracts are not sufficiently expressive

o Effect of operation describes the locations read and
written by it

e Expressed by access permission contract

http://proglang.informatik.uni-freiburg.de/jscontest/
http://proglang.informatik.uni-freiburg.de/jscontest/

Effects: Access Permission Contracts

e Type contracts are not sufficiently expressive

o Effect of operation describes the locations read and
written by it

e Expressed by access permission contract
Access Permission

e Abstraction of a set of access paths

e Syntax: file path with wildcards, components are
property names

http://proglang.informatik.uni-freiburg.de/jscontest/
http://proglang.informatik.uni-freiburg.de/jscontest/

Effects: Access Permission Contracts

e Type contracts are not sufficiently expressive

o Effect of operation describes the locations read and
written by it

e Expressed by access permission contract

Access Permission

e Abstraction of a set of access paths

e Syntax: file path with wildcards, components are
property names

... Contract

e comes with dynamic monitoring

e see http://proglang.informatik.
uni-freiburg.de/jscontest/

http://proglang.informatik.uni-freiburg.de/jscontest/
http://proglang.informatik.uni-freiburg.de/jscontest/

Introduction
000

Example: Add Node to Singly-Linked List

How does this operation affect the object graph?

1 function add(data) {

2 var node = {data: data, next: null}, current;

3 if (this._head === null) {

4 this._head = node;

5 }else {

6 current = this._head;

7 while(current.next) { current = current.next; }
8 current.next = node;

9

10 this._length++;

11}

Introduction
000

Example: Add Node to Singly-Linked List

How does this operation affect the object graph?

1 function add(data) {

2 var node = {data: data, next: null}, current;

3 if (this._head === null) {

4 this._head = node;

5 }else {

6 current = this._head;

7 while(current.next) { current = current.next; }
8 current.next = node;

9

10 this._length++;

11}

e Reads and writes this._head and this._length.

Introduction

000

Example: Add Node to Singly-Linked List

How does this operation affect the object graph?

1 function add(data) {

2 var node = {data: data, next: null}, current;

3 if (this._head === null) {

4 this._head = node;

5 }else {

6 current = this._head;

7 while(current.next) { current = current.next; }
8 current.next = node;

9

10 this._length++;

11}

e Reads and writes this._head and this._length.
e Reads this._head.next...next and writes the last next property

Introduction

Example: Add Node to Singly-Linked List

How does this operation affect the object graph?

1 function add(data) {

2 var node = {data: data, next: null}, current;

3 if (this._head === null) {

4 this._head = node;

5 }else {

6 current = this._head;

7 while(current.next) { current = current.next; }
8 current.next = node;

9

10 this._length++;

11}

e Reads and writes this._head and this._length.
e Reads this._head.next...next and writes the last next property
e Does not access the data argument

Introduction
000

Example with Access Permission Contract

1 /xc {}.(any) — undefined

2 with [this._head, this._head.nextx.next, this._length] =/
s function add(data) {

4 var node = {data: data, next: null}, current;
5 if (this._head === null) {
6 this._head = node;

7 } else {

8 current = this._head;

9 while(current.next) { current = current.next; }

10 current.next = node;
11 }
12 this._length++;

!

Introduction

Effects for Singly-Linked List Library

add(data):

this._head, this._head.nextx.next, this._length
item(index):

this._length.@, this._head.nextx.next.@,

this._head.nextx.data.@

remove(index):

this._head.next+.data.@, this._head.nextx.next,
this._length

size():

this._length.@

toArray():

this._head.next*.next.@

toString():
this._head.next*.next.@

Introduction

P

)

? = Prop,

C

Syntax of Access Permissions

Prop, p € Prop properties

e|P.b|Px.b
O|bla+a

5‘,0.71’
R|W

()

path permissions
access permissions

access paths
access classifiers
classified access paths

©@=0C Prop

Introduction
000

Path Semantics of Access Permissions

~v(m) < a|path v(7) matches permission a

W() <e R(e) < b
y(m) < b peP y(m) < b
v(p.w) < P.b y(m) < Px.b
y(r)<Px.b peP
y(p.m) < Px.b
K =< ay K =< a (Ve e K)k < a

K=< a+ a K=< a+ a K < a

Examples

o W(this.head) < this.head
e W(this.length) 4 this.length.@ because W(c) £ @
e R(this.length) < this.length.@ because R(¢) < @

1.

2.

Properties

If R(7.p) < a, then R(7) < a

Read permissions are closed under prefix.

If W(7.p) < a,then R(7) < a

The initial segment of a write permission yields read
permission.

. W(r) £ b.@

A path permission ending in @ indicates read-only
access.

All Settled?

e At this point, the issue seems settled.

e The semantics of an access path seems obvious and
intuitive.

o |Sit?

Introduction
000

Interpretation of Paths

/xc (obj, obj) — any with [x.b,y.a] */
function h(x, y) {

ya=1;

y.b = 2; // violation?

// entry point #1
function h1() {
varo={a:—-1,b:-2};
s h(o, 0);
10 }
11 // entry point #2
12 function h2() {
13 h({ar—-1,b: -2} {a:—1,b: -21});
14
}

1
2
3
4
5}
6
7
8

Design Space for Semantics |

Path-dependent access
VS.
Location-dependent access

Path-Dependent Access

An access permission grants the right to read or
modify a property of an object depending on the
actual traversal path through which the object
has been reached.

= For each access, there is a unique path that
determines the access rights.

= h1() and h2() both lead to violation

Location-Dependent Access

An access permission attaches the right to read
or modify a property of an object to its location.

= For each access, there may be a number of paths in
the permission that contribute to the access rights.

= h1() is accepted because y.b is an alias of x.b, but h2()
leads to a violation.

= Violation is not stable

Design Space for Semantics, |l

Dynamic Extent
VS.
Lexical Extent

Introduction
000

Example |

/xc (obj) — any with [x.a] */
function d1(x) {
return x.a; // violation if called from d2
}
/xc (obj) — any with [] =/
function d2(x) {
return d1(x);

}

© 9 o s W N e

Introduction

Example |
1
2 function d1(x) {
3 return x.a; // violation if called from d2
i}
5
¢ function d2(x) {
7 return d1(x);
o }

e dynamic extent: the restriction imposed by contract
on d2 carries over to d1

e lexical extent: ?

Introduction
000

Example Il

/xc (obj) — (() — any) with [x.b] */
function f(x) {
return function() { return x.a +”” + x.b; };
}
function f1() {
var r = f({ a: ”secret”, b: “revealed” });
return r();

}

©® O o A W N e

©® O o A W N e

Example Il

function f(x) {
return function() { return x.a + ”” + x.b; };

}

function f1() {
var r = f({ a: ”secret”, b: "revealed” });
return r();

}

e dynamic extent: no violation
e lexical extent: reading x.a triggers violation

©® O o A W N e

Example Il

function f(x) {
return function() { return x.a + ”” + x.b; };

}

function f1() {
var r = f({ a: ”secret”, b: “revealed” });
return r();

}

e dynamic extent: no violation
e lexical extent: reading x.a triggers violation

e If x.a should not be read, this contract is more
appropriate

Design Space for Semantics,

Pre-State Snapshot

An access permission only applies to objects
and paths in the heap at the time when the
contract is installed.

Introduction
000

Alternatives to Pre-State Snapshot?

Candidates for Reference Heaps

e pre-state
consistent with verification approaches (precondition)

e current state
“symbolic” interpretation of access paths

e post-state
2?7

Introduction
000

Symbolic Interpretation of Access Paths

1 /*xC (obj, obj) — any with [x.a, y.a, y.a.b] «/
2 function b(x, y) {

3 y.a=Xa;

« y.ab=42;/ allowed?

5}

Introduction
000

Symbolic Interpretation of Access Paths

1

> function b(x, y) {

3 y.a=Xa;
« y.ab=42;/ allowed?
s }

o Expectation: x.a.b does not change

o Admitted by symbolic interpretation: inconsistent with
verification

Design Space for Semantics, 1V

Sticky Update

A property assignment keeps the access paths
of the value on its right-hand side.

Introduction
000

Consequence of Sticky Update

1 /xc (obj) — any with [x.a,x.b.a] */
2 function 1(x) {

3 X.a=Xxb;

4 Xx.a.a=42;
s}

¢ function 11() {
» varx={a:{},b:{}};
s 1(x);

o }

Is there a violation?

Introduction

Design Choices in JSContest

Objective: Partial Specifications

e Path-dependent access
e Dynamic extent
e Pre-state snapshot
e Sticky update
Choices consistent with static analysis (effect systems)

and static verification (c.f. dynamic frame rule by Smans
et al)

Introduction

Alternative Design Choices

Objective: Security

Different choices seem advantageous
e |ocation-based semantics
e lexical extent (?)

e access restrictions instead of permissions
i.e., guarantee no access to window.location

Side Remark: Efficiency

Path-Dependent Access

e references need to be paired with path information
e checking a permission: O(tinstalled permissions)
e installing a permission: O(1)

Location-Dependent Access

e separate data structure for rights management

e checking: O(1)

e installing a permission: (multiple) heap traversals;
does that amortize?

Introduction
000

Technical Development

Big-step evaluation judgment

0, RWEH;ue— H;Uu;v

p environment

R, W read and write permissions
H, H heap

u, u' timp stamp

e expression

v return value

Introduction

Two rules

PERMIT

o Rlu— L] W[uw— L) FH,u+1,e—= H;U;v
p = plx = p(x) < [u €]l

0, RWHFH;u;permit x: L,,L,ine— H;Uu;v

GET
p, RWEH,ue— H; U; (¢, M) R b M.p

P, RWHEH;,u;ep— H;U; M.pe H(¢)(p)

Theorem: Soundness

o Reference value ::= Location x PMap
e PMap ::= Stamp — AccessPath

Theorem
For each reference value, the access path information is
correct with respect to its corresponding pre-state heap.

Theorem: Stability of Violation

e If running a program on a given heap raises a
violation, then it also raises a violation on a heap in
which more locations are aliased.

e If running a program produces a result on a given
heap, then it also produces a result on a heap with
less aliasing.

Theorem: Stability of Violation

e If running a program on a given heap raises a
violation, then it also raises a violation on a heap in
which more locations are aliased.

e If running a program produces a result on a given
heap, then it also produces a result on a heap with
less aliasing.

* Unless the program depends on an update to a
shared object.

Introduction

Theorem: Completeness

All accesses through a variable with an access
permission contract can only occur via permitted paths.

Implementation

e By transformation of JavaScript code

e Slowdown by a factor of 4—4.4

e Problems: Interfacing with non-transformed code
(e.g., library code)

e Large subset of JavaScript supported

o Exceptions: prototype accesses, with statements, eval

e Goal: implementation in browser / JavaScript engine
evades these problems

Evaluation

e Question: effectiveness of access permissions for
detecting programming errors

e Method

e Hand-annotated code run with monitoring
¢ Random code modifications
e Check if modifications detected

Singly-Linked Lists: 6.4% More Errors
Detected

type type+-effect

fulfilled contracts 1011 18.0% 711 127 %
rejected contracts 4607 82.0% | 4907 87.3%

reason for rejection (a mutant may be counted multiple times)

type contract failure | 2020 43.9% | 1643 33.5%

signaled error 2034 441% | 2136 43.5%
browser timeout 553 12.0 % 243 5.0%
read violation - 00% | 1018 20.7 %
write violation - 0.0% | 1606 32.7 %

read/write violation - 00% | 1842 37.5%

Richards Benchmark: 13% More Errors
Detected

type type + effect

fulfilled contracts 1148 38.9% 911 30.8%
rejected contracts 1807 61.1% | 2044 69.2%

reason for rejection (a mutant may be counted multiple times)

type contract failure | 872 48.3% 866 42.4%

signaled error 1052 58.2% | 1037 50.7%
browser timeout 28 1.5% 30 1.5%
read violation 0 0.0% 202 9.9%
write violation 0 0.0% 149 7.4%

read/write violation 0 0.0% 349 17.1%

Effect Inference

e Where do effects come from?

e For program understand, an automated approach is
advantageous.

Sampling

e Program run of a JavaScript program — list of
classified access paths

e Example (for add, typically several 1000):

(

(

(
(_head.next.next)
(_head.next.next)
(_head.next .next .next)
(_head.next .next .next)
(

(

Introduction
000

Example: Structure Derived from Effects

Implementation of Sampling

Source-to-source transformation of the JavaScript
program

Instruments each property read and write operation
Annotates objects with path information (anchor and
access path)

Implemented using wrapper objects

Path set stored in a trie

_length
this

_head next next next

Introduction

Hypothesis of the heuristic

Intuition drawn from list and tree datatypes
Hypothesis

Permissions have one of the forms
© Di...Pn.Px.gi...Qm

® Di...Pn
for property names p; and g; and a property set P.

Introduction

Hypothesis of the heuristic

Intuition drawn from list and tree datatypes
Hypothesis

Permissions have one of the forms
© Di...Pn.Px.gi...Qm

® Di...Pn
for property names p; and g; and a property set P.

Need to identify . ..

e common prefixes
e set of middle properties
e common suffixes

Introduction

Overall inference algorithm
Only for read paths

Input MN" set of all read paths

— Determine interesting prefixes
M§ < Prefixes(M")

— Infer permissions
R < Permissions(Reduct(3), ", s/, sd)

— Simplify permissions
Simplify(R)

Output R.@

Introduction
000

Interesting Prefixes
Recall the read paths of the add example:

R (_head)

R(_head.next)

R (_head.next .next)
R(_head.next .next.next)
R(_length)

Introduction

Interesting Prefixes
Recall the read paths of the add example:

R (_head)

R(_head.next)

R (_head.next .next)
R(_head.next .next.next)
R(_length)

The interesting prefixes are _head and _length. Why?

Interesting Prefixes
Recall the read paths of the add example:

R (_head)

R(_head.next)

R (_head.next .next)
R(_head.next .next.next)
R(_length)

The interesting prefixes are _head and _length. Why?
A prefix is interesting if . ..

e traversing it changes the set of accessible symbols

e extending it does not change the set of accessible
symbols

Introduction

(e]e]e}

Determining Interesting Prefixes

Prefix: ¢

this

_length

head next ™\ next next O
N

Accessible symbols: _head, _length, next

Prefix: _length

_length

chead next _/~\ next next O
/

this

Accessible symbols:

Prefix: _head

Accessible symbols next

Introduction
000

From Interesting Prefix to Permission

From Interesting Prefix to Permission

e Interesting prefixes partition the set of paths "
e For each prefix = determine a permission by
extending from the 1-suffixes of the quotient = \ 1"
e length\N" = {c}
yields permission _length
e head\l" = {¢,next,next.next,next.next.next}
yields permissions _head and _head.nextx.next

From Interesting Prefix to Permission

e Interesting prefixes partition the set of paths "
e For each prefix = determine a permission by
extending from the 1-suffixes of the quotient 7 \ "
e length\N" = {c}
yields permission _length
e head\l" = {¢,next,next.next,next.next.next}
yields permissions _head and _head.nextx.next
o Simplification and making readonly yields
_Jlength.@ and _head.next+.@

Papers

e Contract-driven Testing of JavaScript Code, TOOLS
2010

e A Heuristic Approach for Computing Effects, TOOLS
2011

e Access Permission Contracts for Scripting
Languages, POPL 2012

Conclusions

e JsConTest: Contracts and random testing for JS

e Access permission contracts extend the scope of
contracts and monitoring to side effects

e Access permissions fit in with static verification
e Inference of contracts for program understanding

http://proglang.informatik.uni-freiburg.de/jscontest/
http://proglang.informatik.uni-freiburg.de/jscontest/

Conclusions

e JsConTest: Contracts and random testing for JS

e Access permission contracts extend the scope of
contracts and monitoring to side effects

e Access permissions fit in with static verification
e Inference of contracts for program understanding

Future Work

e Browser instrumentation
¢ Investigate completeness of inference
e Location-dependent access for security

http://proglang.informatik.uni-freiburg.de/jscontest/
http://proglang.informatik.uni-freiburg.de/jscontest/

Conclusions

e JsConTest: Contracts and random testing for JS

e Access permission contracts extend the scope of
contracts and monitoring to side effects

e Access permissions fit in with static verification
e Inference of contracts for program understanding

Future Work

e Browser instrumentation
¢ Investigate completeness of inference
e Location-dependent access for security

http://proglang.informatik.
uni-freiburg.de/jscontest/

http://proglang.informatik.uni-freiburg.de/jscontest/
http://proglang.informatik.uni-freiburg.de/jscontest/

Introduction
000

Further Examples

e Layout computation

/xc {}.(int, int) — boolean with [this.x, this.y, this.w, this.h] =/
Frame.prototype.layout = function (width, height) { ... }

Further Examples
e Layout computation

Frame.prototype.layout = function (width, height) { ... }

e Objects may be used for keyword parameters:
¢ = createCanvas({width: 100, height: 200, background: "green”});
The parameter object should be read-only:

Further Examples
e Layout computation

Frame.prototype.layout = function (width, height) { ... }

e Objects may be used for keyword parameters:
¢ = createCanvas({width: 100, height: 200, background: "green”});
The parameter object should be read-only:

e Observer pattern

Observer.prototype.update =
function (subject) {... subject.state.value = ...}

Further Examples
e Layout computation

Frame.prototype.layout = function (width, height) { ... }

e Objects may be used for keyword parameters:
¢ = createCanvas({width: 100, height: 200, background: "green”});

The parameter object should be read-only:

e Observer pattern

Observer.prototype.update =
function (subject) {... subject.state.value = ...}

e Forbid access to a specific property

	Introduction
	Intro

