Elimination-based Range Analysis for
Unstructured code in the LLVM framework

Paul Subotic

November 17, 2011

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Introduction

» Range Analysis

» Finds lower and upper bounds of variables values
» Challenges

» Conceptionally infinitely ascending chains

» |dentify Loops
» Existing techniques

» Relies on code structure (e.g. Astrée [Cousot et al., 2006])
» Require a pre-processing stage to discover loop headers
([Bourdoncle, 1993])

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Introduction

» Our technique:

1. Extends elimination-based data flow analysis to a lattice with
infinite ascending chains

2. Fast termination

3. Loops are detected intrinsically with in the data flow analysis.

» Implemented as an analysis pass in the LLVM compiler
framework.

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Motivating Example

®int i,k

int arr[5];

[
if (<9
goto B2
else
goto B7;

B2
int j = 0;
if (i <9
goto B3
else
goto BS;

I1:i20Aj<3
if (arr[j] > arr[j+1])
goto BS
else
goto B6;

Elimination-based Range Analysis for Unstruc

Outline of Presentation

Background
Existing Techniques
Our Approach
Implementation

Experiments

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Background

Foundations

v

Range Analysis is a complete lattice
» x 2y, xis as or less precise than y

v

T least element (least precise),

v

L greatest element,so T J L
» LI merges information
M constrains information

v

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Background

Representing Information with Intervals

[-inf, inf] i
[-200, -110] [-100, 100]

L L8 L

[-170,-150] [-155,-111] [-90, 10] [5, 100]
AN / NS
[-150, -150] [9,9]

1

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation

Some Existing Techniques

» lterative Data-Flow Analysis [Kildall, 1973] :

» A technique for iteratively gathering variable information at
various points in a computer program.
» Operates on finite and short lattice structures

» Abstract Interpretation [Cousot & Cousot, 1977] :
» A theory of sound approximation of the semantics of computer
programs
» Approximating the execution behaviour of a computer program
» Additional theory of widening/narrowing to accelerate
convergence, required with high and unbounded domains

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Existing Techniques

lterative Data-Flow Analysis

v

Input in the form of a Control Flow Graph (CFG)

v

Initialise to L

v

Every block transforms the values

v

Iterate through CFG until a fixpoint is reached

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Existing Techniques

Attempt 1: Iterative Data-Flow Analysis

if (a<3)

condition: a >= 3

condition: a< 3

[1,4] n [3,] = [3,4]
[1,4] n [, 2] =[1,2]

(5,511 [34] = [3.5]
a=[55] %——J

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Existing Techniques

Attempt 1: Iterative Data-Flow Analysis

b1

int1,
int arf

T
s

b2

ol Ca—
o e S

P2
A
b6 b3 57
i+ ; ++
ifi45
= r
4 nvarian (1) L —

if arr[j] > akrfj+1]

b5
swap(j, j+1!
K+

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Existing Techniques

With Kleene lteration

intj=0;
inti=0;

if <= 3) —

jH
k++;

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Existing Techniques

With Kleene lteration

Vie LIChLCIKCh..Cly,

where:

In the example, when the inner loop is first visited, we have that
j+[0,0] and k ~ [0, 0]. In subsequent visits,

j+[0,1] and k — [0, 1],
j[0,2] and k ~ [0, 2],
j+10,3] and k — [0, 3],

j[0,4] and k — [0, oo].

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Existing Techniques

The Problem: Slow Termination

» Impractically slow termination

» Conditions not incorporating increasing variables
» Large loop bounds

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Existing Techniques

Attempt 2: Abstract Interpretation

» General method to compute a sound approximation of
program semantics
» Define an abstract semantics, soundly connect to the concrete
semantics
» Soundness ensures that if a property does not hold in the
abstract world, it will not hold in the concrete world
» Define widening and narrowing operator

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Existing Techniques

Abstract Interpretation

Widening and narrowing enforce termination
» Widening safely approximates the fixpoint solution
» Narrowing recovers some precision

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Existing Techniques

Attempt 2: Abstract Interpretation

More
precision

Less
precision

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Existing Techniques

Abstract Interpretation

» Requires to know where to perform widening
» Previously approaches

» Use the syntax to determine the loop
» Perform complicated pre-processing to find loop headers

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Our Approach

Our Approach

» Discovers loops implicitly using elimination-based data flow
analysis

» Various acceleration techniques can be embedded such as
widening and narrowing

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Our Approach

Our Approach

» Elimination-based approach: Based on Gaussian elimination
» Instead of iterating, we eliminate variables from the flow
equations
» substitution
e.g. X = true,y = x V false ~ y = true Vv false
> loop-breaking
€e.g. X = X A true ~» X = true

» When all variables are eliminated, we compute a solution

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Our Approach

Elimination-based Approach Example - Diverging

BO .
i=1;

if(i < 1) goto Bl;
else goto B2;

— .

B1
i=i+1;
goto B2;

B2
i=1i+1;
goto Bl;

Figure: An Irreducible CFG of a Diverging Program

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Our Approach

Elimination

Xo = fo(T)
Xi = (X0, X2)
Xo = f2(Xo, X1)

EQS =

Substitution ~»
X() = fo(T)
X1 = fi(fo(T), X2)

|X2 = fa(fo(T). X1)

EQS, =

Substitution ~>
Xo = fo(T)

X1 = f1(f0(T),X2)

Xo = fz(fo(T), fy (fo(T), Xg))

EQS; =

Break Loop, Substitute Back ~»
Xo = fo(T)

Xy = fi(fo(T), F*(f(fo(T). fi (fo(T). X2), X3)))
Xg = F*(fg(fo(T), f1(fo(T),X2),Xé))

EQS, =

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Our Approach

Solve

> Xi = f(fo(T), F*(f2(fo(T). fi(fo(T), X2), X3)))
» F* performs widening and narrowing

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Our Approach

An Example

Implementation

LLVM Prototype

» Implemented in LLVM for core instructions

» Implementation supports both Intervals and Symbolic
Intervals

Elimination-based Range Analysis for Unstructured code in the LLVM framework

[Block | i j K|
BO [[0,0] L [0,0]
Bt |[0,5] [0,5] [0, <]
B2 |[0,4] [0,0] [0, <]
B3 |[0,4] [0,5] [0, <]
B4 |[0,4] [1,4] [,
B5 |[1,5] [5,5] [1,c]
B6 |[55] [5 5] [0,

Table: Motivating Example

Elimination-based Range Analysis for Unstructured code in the LLVM framework

| Test | Exact Bounded PartWiden Full Widen |

TH1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
All
(%)

o

WW= NN =2 a2W0O=MNDN =
APONWORMRODUIOOONOOO

o
~
n
(o]

SlHloonvwnvoord~ZF w0
oojlcoo-ococomocooocococoo

N
)]
N
a

Table: Variable Bounds Per Test Case

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Summary

» Implemented in the LLVM Compiler Framework
» Feasibility shown using several test programs

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Some Future Work

v

Conduct comparison with existing techniques

v

Add non-numerical domains

v

Improve precision through additional abstract domains
(Template Polyhedra [Sankaranarayanan et al., 2005])

v

Integrate with acceleration methods such as policy
iteration [Gawlitza & Seidl, 2007]

Elimination-based Range Analysis for Unstructured code in the LLVM framework

References |

@ Bourdoncle, F. (1993).
Efficient chaotic iteration strategies with widenings.
In In Proceedings of the International Conference on Formal
Methods in Programming and their Applications (pp.
128—-141).: Springer-Verlag.

@ Cousot, P. & Cousot, R. (1977).
Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of
fixpoints.
In 4th POPL (pp. 238-252).

Elimination-based Range Analysis for Unstructured code in the LLVM framework

References Il

[@ Cousot, P, Cousot, R., Feret, J., Mauborgne, L., Miné, A.,
Monniaux, D., & Rival, X. (2006).
Combination of abstractions in the ASTREE static analyzer.
In 11th ASIAN (pp. 272-300).

[Gawlitza, T. & Seidl, H. (2007).
Precise fixpoint computation through strategy iteration.
In Proceedings of the 16th European conference on
Programming, ESOP’07 (pp. 300—-315). Berlin, Heidelberg:
Springer-Verlag.

@ Kildall, G. A. (1973).
A unified approach to global program optimization.
1st POPL (pp. 194—-206).

Elimination-based Range Analysis for Unstructured code in the LLVM framework

References llI

@ Sankaranarayanan, S., Sipma, H. B., & Manna, Z. (2005).
Scalable analysis of linear systems using mathematical
programming.

In In Proc. VMCAI, LNCS 3385 (pp. 25-41).: Springer.

Elimination-based Range Analysis for Unstructured code in the LLVM framework

	Outline of Presentation
	Background
	Existing Techniques
	Our Approach
	Implementation
	Experiments

