
Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Elimination-based Range Analysis for
Unstructured code in the LLVM framework

Paul Subotic

November 17, 2011

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Introduction

I Range Analysis
I Finds lower and upper bounds of variables values

I Challenges
I Conceptionally infinitely ascending chains
I Identify Loops

I Existing techniques
I Relies on code structure (e.g. Astrée [Cousot et al., 2006])
I Require a pre-processing stage to discover loop headers

([Bourdoncle, 1993])

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Introduction

I Our technique:
1. Extends elimination-based data flow analysis to a lattice with

infinite ascending chains
2. Fast termination
3. Loops are detected intrinsically with in the data flow analysis.

I Implemented as an analysis pass in the LLVM compiler
framework.

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Motivating Example

int i,k = 0;
int arr[5]; . . .

B0

if (i < 5)
goto B2
else

goto B7;

B1

int j = 0;
if (i < 5)
goto B3
else

goto B5;

B2

I1:i ≥ 0 ∧ j ≤ 3
if (arr[j] > arr[j+1])

goto B5
else

goto B6;

B3

swap(arr, j, j+1);
k++;

B4

I2:i == 5 ∧ k ≤ 25
B7

j++;
B6

i++;
B5

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Background

Existing Techniques

Our Approach

Implementation

Experiments

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Foundations

I Range Analysis is a complete lattice
I x w y, x is as or less precise than y
I > least element (least precise),
I ⊥ greatest element, so > w ⊥
I t merges information
I u constrains information

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Representing Information with Intervals

[-inf, inf]

[-100, 100][-200, -110]

[-170,-150] [-155,-111]

[-150, -150]

⊥

[-90, 10] [5, 100]

[9,9]

M
o

re
 in

fo
Join

M
ee

t

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Some Existing Techniques

I Iterative Data-Flow Analysis [Kildall, 1973] :
I A technique for iteratively gathering variable information at

various points in a computer program.
I Operates on finite and short lattice structures

I Abstract Interpretation [Cousot & Cousot, 1977] :
I A theory of sound approximation of the semantics of computer

programs
I Approximating the execution behaviour of a computer program
I Additional theory of widening/narrowing to accelerate

convergence, required with high and unbounded domains

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Iterative Data-Flow Analysis

I Input in the form of a Control Flow Graph (CFG)
I Initialise to ⊥
I Every block transforms the values
I Iterate through CFG until a fixpoint is reached

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Attempt 1: Iterative Data-Flow Analysis

if (a < 3)

a = [5,5]

condition: a < 3

condition: a >= 3

a = [1, 4]

[1,4] ⊓ [-∞, 2] = [1,2]

[1,4] ⊓ [3, ∞] = [3,4]

[5,5] ⊔ [3,4] = [3,5]

 ….

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Attempt 1: Iterative Data-Flow Analysis

int I, k = 0
int arr[5] = ...

if i < 5

int j = 0
if j < 5

i++

invariant (2)

j++;

invariant (1)
if arr[j] > arr[j+1]

swap(j, j+1)
k++

*P1

*P2

*P4

*P3

b1

b2

b3

b4

b5

b6 b7

b8

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

With Kleene Iteration

if (j <= 3)

j++;
k++;

...

int j = 0;
int i = 0;

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

With Kleene Iteration

∀li ∈ L.l1 v l2 v l3 v l4...v ln
where:
In the example, when the inner loop is first visited, we have that
j 7→ [0, 0] and k 7→ [0, 0]. In subsequent visits,

j 7→ [0, 1] and k 7→ [0, 1],
j 7→ [0, 2] and k 7→ [0, 2],
j 7→ [0, 3] and k 7→ [0, 3],

...

j 7→ [0, 4] and k 7→ [0,∞].

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

The Problem: Slow Termination

I Impractically slow termination
I Conditions not incorporating increasing variables
I Large loop bounds

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Attempt 2: Abstract Interpretation

I General method to compute a sound approximation of
program semantics

I Define an abstract semantics, soundly connect to the concrete
semantics

I Soundness ensures that if a property does not hold in the
abstract world, it will not hold in the concrete world

I Define widening and narrowing operator

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Abstract Interpretation

Widening and narrowing enforce termination
I Widening safely approximates the fixpoint solution
I Narrowing recovers some precision

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Attempt 2: Abstract Interpretation

Red / FP

Ext / FP

Fixed-Point
 (FP)

⊤

⊥

Less
precision

More
precision

widening

narrowing

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Abstract Interpretation

I Requires to know where to perform widening
I Previously approaches

I Use the syntax to determine the loop
I Perform complicated pre-processing to find loop headers

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Our Approach

I Discovers loops implicitly using elimination-based data flow
analysis

I Various acceleration techniques can be embedded such as
widening and narrowing

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Our Approach

I Elimination-based approach: Based on Gaussian elimination
I Instead of iterating, we eliminate variables from the flow

equations
I substitution

e.g. x = true, y = x ∨ false{ y = true ∨ false
I loop-breaking

e.g. x = x ∧ true{ x = true

I When all variables are eliminated, we compute a solution

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Elimination-based Approach Example - Diverging

i = 1;
if(i < 1) goto B1;
else goto B2;

B0

i =i + 1;
goto B2;

B1
i =i + 1;
goto B1;

B2

Figure: An Irreducible CFG of a Diverging Program

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Elimination

EQS =

X0 = f0(>)
X1 = f1(X0,X2)

X2 = f2(X0,X1)

Substitution{

EQS0 =

X0 = f0(>)
X1 = f1(f0(>),X2)

X2 = f2(f0(>),X1)

Substitution{

EQS1 =

X0 = f0(>)
X1 = f1(f0(>),X2)

X2 = f2(f0(>), f1(f0(>),X2))

Break Loop,Substitute Back{

EQS2 =

X0 = f0(>)
X1 = f1(f0(>),F∗(f2(f0(>), f1(f0(>),X2),X ′2)))
X2 = F∗(f2(f0(>), f1(f0(>),X2),X ′2))

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Solve

I X1 = f1(f0(>),F∗(f2(f0(>), f1(f0(>),X2),X ′2)))
I F∗ performs widening and narrowing

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

An Example

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

LLVM Prototype

I Implemented in LLVM for core instructions
I Implementation supports both Intervals and Symbolic

Intervals

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Block i j k

B0 [0, 0] ⊥ [0,0]
B1 [0, 5] [0, 5] [0, ∞]
B2 [0, 4] [0, 0] [0, ∞]
B3 [0, 4] [0, 5] [0, ∞]
B4 [0, 4] [1, 4] [1, ∞]
B5 [1, 5] [5, 5] [1, ∞]
B6 [5, 5] [5, 5] [0, ∞]

Table: Motivating Example

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Test Exact Bounded Part Widen Full Widen

T1 1 5 0 0
T2 2 1 0 0
T3 2 1 0 0
T4 1 3 2 0
T5 0 10 0 0
T6 3 1 0 0
T7 1 2 0 0
T8 4 4 5 0
T9 1 0 0 5

T10 1 0 4 0
T11 2 2 0 0
T12 2 3 3 1
T13 1 2 2 0
T14 3 6 6 0
T15 3 5 4 0
All 27 45 26 6
(%) 26 43 25 6

Table: Variable Bounds Per Test Case

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Summary

I Implemented in the LLVM Compiler Framework
I Feasibility shown using several test programs

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Some Future Work

I Conduct comparison with existing techniques
I Add non-numerical domains
I Improve precision through additional abstract domains

(Template Polyhedra [Sankaranarayanan et al., 2005])
I Integrate with acceleration methods such as policy

iteration [Gawlitza & Seidl, 2007]

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

References I

Bourdoncle, F. (1993).
Efficient chaotic iteration strategies with widenings.
In In Proceedings of the International Conference on Formal
Methods in Programming and their Applications (pp.
128–141).: Springer-Verlag.

Cousot, P. & Cousot, R. (1977).
Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of
fixpoints.
In 4th POPL (pp. 238–252).

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

References II

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A.,
Monniaux, D., & Rival, X. (2006).
Combination of abstractions in the ASTREÉ static analyzer.
In 11th ASIAN (pp. 272–300).

Gawlitza, T. & Seidl, H. (2007).
Precise fixpoint computation through strategy iteration.
In Proceedings of the 16th European conference on
Programming, ESOP’07 (pp. 300–315). Berlin, Heidelberg:
Springer-Verlag.

Kildall, G. A. (1973).
A unified approach to global program optimization.
1st POPL (pp. 194–206).

Elimination-based Range Analysis for Unstructured code in the LLVM framework

Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

References III

Sankaranarayanan, S., Sipma, H. B., & Manna, Z. (2005).
Scalable analysis of linear systems using mathematical
programming.
In In Proc. VMCAI, LNCS 3385 (pp. 25–41).: Springer.

Elimination-based Range Analysis for Unstructured code in the LLVM framework

	Outline of Presentation
	Background
	Existing Techniques
	Our Approach
	Implementation
	Experiments

