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Introduction

» Range Analysis

» Finds lower and upper bounds of variables values
» Challenges

» Conceptionally infinitely ascending chains

» |dentify Loops
» Existing techniques

» Relies on code structure (e.g. Astrée [Cousot et al., 2006])
» Require a pre-processing stage to discover loop headers
([Bourdoncle, 1993])
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Introduction

» Our technique:

1. Extends elimination-based data flow analysis to a lattice with
infinite ascending chains

2. Fast termination

3. Loops are detected intrinsically with in the data flow analysis.

» Implemented as an analysis pass in the LLVM compiler
framework.
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Motivating Example

®int i,k

int arr[5];

[
if (<9
goto B2
else
goto B7;

B2
int j = 0;
if (i <9
goto B3
else
goto BS;

I1:i20Aj<3
if (arr[j] > arr[j+1])
goto BS
else
goto B6;
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Background

Foundations

v

Range Analysis is a complete lattice
» x 2y, xis as or less precise than y

v

T least element (least precise),

v

L greatest element,so T J L
» LI merges information
M constrains information

v
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Background

Representing Information with Intervals

[-inf, inf] i
[-200, -110] [-100, 100]

L L8 L

[-170,-150] [-155,-111]  [-90, 10]  [5, 100]
AN / NS
[-150, -150] [9,9]

1
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Outline of Presentation Background Existing Techniques Our Approach Implementation

Some Existing Techniques

» lterative Data-Flow Analysis [Kildall, 1973] :

» A technique for iteratively gathering variable information at
various points in a computer program.
» Operates on finite and short lattice structures

» Abstract Interpretation [Cousot & Cousot, 1977] :
» A theory of sound approximation of the semantics of computer
programs
» Approximating the execution behaviour of a computer program
» Additional theory of widening/narrowing to accelerate
convergence, required with high and unbounded domains
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Existing Techniques

lterative Data-Flow Analysis

v

Input in the form of a Control Flow Graph (CFG)

v

Initialise to L

v

Every block transforms the values

v

Iterate through CFG until a fixpoint is reached
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Existing Techniques

Attempt 1: Iterative Data-Flow Analysis

if (a<3)

condition: a >= 3

condition: a< 3

[1,4] n [3, ] = [3,4]
[1,4] n [, 2] =[1,2]

(5,511 [34] = [3.5]
a=[55] %——J
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Existing Techniques

Attempt 1: Iterative Data-Flow Analysis

b1

int1,
int arf
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if arr[j] > akrfj+1]

b5
swap(j, j+1!
K+

Elimination-based Range Analysis for Unstructured code in the LLVM framework



Existing Techniques

With Kleene lteration

intj=0;
inti=0;

if <= 3) —

jH
k++;
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Existing Techniques

With Kleene lteration

Vie LIChLCIKCh..Cly,

where:

In the example, when the inner loop is first visited, we have that
j+[0,0] and k ~ [0, 0]. In subsequent visits,

j+[0,1] and k — [0, 1],
j[0,2] and k ~ [0, 2],
j+10,3] and k — [0, 3],

j[0,4] and k — [0, oo].
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Existing Techniques

The Problem: Slow Termination

» Impractically slow termination

» Conditions not incorporating increasing variables
» Large loop bounds
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Existing Techniques

Attempt 2: Abstract Interpretation

» General method to compute a sound approximation of
program semantics
» Define an abstract semantics, soundly connect to the concrete
semantics
» Soundness ensures that if a property does not hold in the
abstract world, it will not hold in the concrete world
» Define widening and narrowing operator
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Existing Techniques

Abstract Interpretation

Widening and narrowing enforce termination
» Widening safely approximates the fixpoint solution
» Narrowing recovers some precision
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Existing Techniques

Attempt 2: Abstract Interpretation

More
precision

Less
precision
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Existing Techniques

Abstract Interpretation

» Requires to know where to perform widening
» Previously approaches

» Use the syntax to determine the loop
» Perform complicated pre-processing to find loop headers
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Our Approach

Our Approach

» Discovers loops implicitly using elimination-based data flow
analysis

» Various acceleration techniques can be embedded such as
widening and narrowing
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Our Approach

Our Approach

» Elimination-based approach: Based on Gaussian elimination
» Instead of iterating, we eliminate variables from the flow
equations
» substitution
e.g. X = true,y = x V false ~ y = true Vv false
> loop-breaking
€e.g. X = X A true ~» X = true

» When all variables are eliminated, we compute a solution
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Our Approach

Elimination-based Approach Example - Diverging

BO .
i=1;

if(i < 1) goto Bl;
else goto B2;

— .

B1
i=i+1;
goto B2;

B2
i=1i+1;
goto Bl;

Figure: An Irreducible CFG of a Diverging Program
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Our Approach

Elimination

Xo = fo(T)
Xi = (X0, X2)
Xo = f2(Xo, X1)

EQS =

Substitution ~»
X() = fo(T)
X1 = fi(fo(T), X2)

|X2 = fa(fo(T). X1)

EQS, =

Substitution ~>
Xo = fo(T)

X1 = f1(f0(T),X2)

Xo = fz(fo(T), fy (fo(T), Xg))

EQS; =

Break Loop, Substitute Back ~»
Xo = fo(T)

Xy = fi(fo(T), F*(f(fo(T). fi (fo(T). X2), X3)))
Xg = F*(fg(fo(T), f1(fo(T),X2),Xé))

EQS, =
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Our Approach

Solve

> Xi = f(fo(T), F*(f2(fo(T). fi(fo(T), X2), X3)))
» F* performs widening and narrowing
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Our Approach

An Example




Implementation

LLVM Prototype

» Implemented in LLVM for core instructions

» Implementation supports both Intervals and Symbolic
Intervals

Elimination-based Range Analysis for Unstructured code in the LLVM framework



[Block | i j K|
BO [[0,0] L  [0,0]
Bt |[0,5] [0,5] [0, <]
B2 |[0,4] [0,0] [0, <]
B3 |[0,4] [0,5] [0, <]
B4 |[0,4] [1,4] [,
B5 |[1,5] [5,5] [1,c]
B6 |[55] [5 5] [0,

Table: Motivating Example
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| Test | Exact Bounded PartWiden  Full Widen |
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Table: Variable Bounds Per Test Case
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Summary

» Implemented in the LLVM Compiler Framework
» Feasibility shown using several test programs
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Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Some Future Work

v

Conduct comparison with existing techniques

v

Add non-numerical domains

v

Improve precision through additional abstract domains
(Template Polyhedra [Sankaranarayanan et al., 2005])

v

Integrate with acceleration methods such as policy
iteration [Gawlitza & Seidl, 2007]
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