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Introduction

I Range Analysis
I Finds lower and upper bounds of variables values

I Challenges
I Conceptionally infinitely ascending chains
I Identify Loops

I Existing techniques
I Relies on code structure (e.g. Astrée [Cousot et al., 2006])
I Require a pre-processing stage to discover loop headers

([Bourdoncle, 1993])
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Introduction

I Our technique:
1. Extends elimination-based data flow analysis to a lattice with

infinite ascending chains
2. Fast termination
3. Loops are detected intrinsically with in the data flow analysis.

I Implemented as an analysis pass in the LLVM compiler
framework.
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Motivating Example

int i,k = 0;
int arr[5]; . . .

B0

if (i < 5)
goto B2
else

goto B7;

B1

int j = 0;
if (i < 5)
goto B3
else

goto B5;

B2

I1:i ≥ 0 ∧ j ≤ 3
if (arr[j] > arr[j+1])

goto B5
else

goto B6;

B3

swap(arr, j, j+1);
k++;

B4

I2:i == 5 ∧ k ≤ 25
B7

j++;
B6

i++;
B5
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Foundations

I Range Analysis is a complete lattice
I x w y, x is as or less precise than y
I > least element (least precise),
I ⊥ greatest element, so > w ⊥
I t merges information
I u constrains information

Elimination-based Range Analysis for Unstructured code in the LLVM framework
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Representing Information with Intervals

[-inf, inf]

[-100, 100][-200, -110]

[-170,-150] [-155,-111]

[-150, -150]

⊥

[-90, 10] [5, 100]

[9,9]

M
o

re
 in

fo
Join

M
ee

t

Elimination-based Range Analysis for Unstructured code in the LLVM framework



Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Some Existing Techniques

I Iterative Data-Flow Analysis [Kildall, 1973] :
I A technique for iteratively gathering variable information at

various points in a computer program.
I Operates on finite and short lattice structures

I Abstract Interpretation [Cousot & Cousot, 1977] :
I A theory of sound approximation of the semantics of computer

programs
I Approximating the execution behaviour of a computer program
I Additional theory of widening/narrowing to accelerate

convergence, required with high and unbounded domains
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Iterative Data-Flow Analysis

I Input in the form of a Control Flow Graph (CFG)
I Initialise to ⊥
I Every block transforms the values
I Iterate through CFG until a fixpoint is reached

Elimination-based Range Analysis for Unstructured code in the LLVM framework
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Attempt 1: Iterative Data-Flow Analysis

if (a < 3)

a = [5,5]

condition: a < 3

condition: a >= 3

a = [1, 4] 

[1,4] ⊓ [-∞, 2] = [1,2]

[1,4] ⊓ [3, ∞] = [3,4]

[5,5] ⊔ [3,4] = [3,5]

 ….

Elimination-based Range Analysis for Unstructured code in the LLVM framework
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Attempt 1: Iterative Data-Flow Analysis

int I, k = 0
int arr[5] = ...

if i < 5

int j = 0
if j < 5

i++

invariant (2)

j++;

invariant (1)
if arr[j] > arr[j+1]

swap(j, j+1)
k++

*P1

*P2

*P4

*P3

b1

b2

b3

b4

b5

b6 b7

b8
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With Kleene Iteration

if (j <= 3)

j++; 
k++;

...

int j = 0;
int i = 0;

Elimination-based Range Analysis for Unstructured code in the LLVM framework
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With Kleene Iteration

∀li ∈ L.l1 v l2 v l3 v l4...v ln
where:
In the example, when the inner loop is first visited, we have that
j 7→ [0, 0] and k 7→ [0, 0]. In subsequent visits,

j 7→ [0, 1] and k 7→ [0, 1],
j 7→ [0, 2] and k 7→ [0, 2],
j 7→ [0, 3] and k 7→ [0, 3],

...

j 7→ [0, 4] and k 7→ [0,∞].
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The Problem: Slow Termination

I Impractically slow termination
I Conditions not incorporating increasing variables
I Large loop bounds
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Attempt 2: Abstract Interpretation

I General method to compute a sound approximation of
program semantics

I Define an abstract semantics, soundly connect to the concrete
semantics

I Soundness ensures that if a property does not hold in the
abstract world, it will not hold in the concrete world

I Define widening and narrowing operator

Elimination-based Range Analysis for Unstructured code in the LLVM framework



Outline of Presentation Background Existing Techniques Our Approach Implementation Experiments

Abstract Interpretation

Widening and narrowing enforce termination
I Widening safely approximates the fixpoint solution
I Narrowing recovers some precision

Elimination-based Range Analysis for Unstructured code in the LLVM framework
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Attempt 2: Abstract Interpretation

Red / FP

Ext / FP

Fixed-Point
     (FP)

⊤

⊥

Less 
precision

More 
precision

widening

narrowing
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Abstract Interpretation

I Requires to know where to perform widening
I Previously approaches

I Use the syntax to determine the loop
I Perform complicated pre-processing to find loop headers

Elimination-based Range Analysis for Unstructured code in the LLVM framework
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Our Approach

I Discovers loops implicitly using elimination-based data flow
analysis

I Various acceleration techniques can be embedded such as
widening and narrowing

Elimination-based Range Analysis for Unstructured code in the LLVM framework
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Our Approach

I Elimination-based approach: Based on Gaussian elimination
I Instead of iterating, we eliminate variables from the flow

equations
I substitution

e.g. x = true, y = x ∨ false{ y = true ∨ false
I loop-breaking

e.g. x = x ∧ true{ x = true

I When all variables are eliminated, we compute a solution

Elimination-based Range Analysis for Unstructured code in the LLVM framework
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Elimination-based Approach Example - Diverging

i = 1;
if(i < 1) goto B1;
else goto B2;

B0

i =i + 1;
goto B2;

B1
i =i + 1;
goto B1;

B2

Figure: An Irreducible CFG of a Diverging Program
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Elimination

EQS =


X0 = f0(>)
X1 = f1(X0,X2)

X2 = f2(X0,X1)

Substitution{

EQS0 =


X0 = f0(>)
X1 = f1(f0(>),X2)

X2 = f2(f0(>),X1)

Substitution{

EQS1 =


X0 = f0(>)
X1 = f1(f0(>),X2)

X2 = f2(f0(>), f1(f0(>),X2))

Break Loop,Substitute Back{

EQS2 =


X0 = f0(>)
X1 = f1(f0(>),F∗(f2(f0(>), f1(f0(>),X2),X ′2)))
X2 = F∗(f2(f0(>), f1(f0(>),X2),X ′2))

Elimination-based Range Analysis for Unstructured code in the LLVM framework
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Solve

I X1 = f1(f0(>),F∗(f2(f0(>), f1(f0(>),X2),X ′2)))
I F∗ performs widening and narrowing

Elimination-based Range Analysis for Unstructured code in the LLVM framework
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An Example

Elimination-based Range Analysis for Unstructured code in the LLVM framework
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LLVM Prototype

I Implemented in LLVM for core instructions
I Implementation supports both Intervals and Symbolic

Intervals

Elimination-based Range Analysis for Unstructured code in the LLVM framework
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Block i j k

B0 [0, 0] ⊥ [0,0]
B1 [0, 5] [0, 5] [0, ∞]
B2 [0, 4] [0, 0] [0, ∞]
B3 [0, 4] [0, 5] [0, ∞]
B4 [0, 4] [1, 4] [1, ∞]
B5 [1, 5] [5, 5] [1, ∞]
B6 [5, 5] [5, 5] [0, ∞]

Table: Motivating Example
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Test Exact Bounded Part Widen Full Widen

T1 1 5 0 0
T2 2 1 0 0
T3 2 1 0 0
T4 1 3 2 0
T5 0 10 0 0
T6 3 1 0 0
T7 1 2 0 0
T8 4 4 5 0
T9 1 0 0 5

T10 1 0 4 0
T11 2 2 0 0
T12 2 3 3 1
T13 1 2 2 0
T14 3 6 6 0
T15 3 5 4 0
All 27 45 26 6
(%) 26 43 25 6

Table: Variable Bounds Per Test Case

Elimination-based Range Analysis for Unstructured code in the LLVM framework
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Summary

I Implemented in the LLVM Compiler Framework
I Feasibility shown using several test programs
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Some Future Work

I Conduct comparison with existing techniques
I Add non-numerical domains
I Improve precision through additional abstract domains

(Template Polyhedra [Sankaranarayanan et al., 2005])
I Integrate with acceleration methods such as policy

iteration [Gawlitza & Seidl, 2007]

Elimination-based Range Analysis for Unstructured code in the LLVM framework
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