SAPLING 2011

Spreadsheets
All the way down

Closing trapdoors, taking the meta out of the menu, and dynamic nodes

Gary Miller gary@sumwise.com

This talk is mainly focused on the research efforts at Sumwise to create a
stronger foundation for decision modelling as typified by Spreadsheets.

Keywords; Programming Languages, Turing Completeness, Spreadsheet

Closing
Trapdoors

—1

Cell Groups 1 ;

Sumwise:
1 The App Store
for Decisions

/
/
/
/

Spreadsheets

Design Patterns in Spreadsheet Modelling

&
v

Turing
complete n

Software Languages r

Sumwise’s value proposition is the enabling, with it’s technology platform, of
market places for decision models. Content experts with modeling skills can

protect and monetize intellectual property created in the form of models.
Decision maker can find models or modelers that solve problems and not have

to fall back to the default of building bespoke, error prone and substandard
spreadsheets.

The development of Sumwise is driven by two forces

1. Capturing the design patterns of expert modelers and making these first
class features.

2. Treating spreadsheets as a programming language and learning from
existing languages and language evolution techniques.

The features the typify these two forces, currently in the platform, are Cell
Groups and Models as Functions. Numerous enabling features had to be added,

including; named nodes, structured axes, node tag based meta data, matrix cell
values, tuples, internal iterator notation.

Sumwise properties: Testablity, Extensibilty, Comprehensiblity. Turns

Closing Taking the meta Dynamic
Trapdoors = out of the menu Nodes

Cell Groups 1

\’«\
Spreadsheets »

Design Patterns in Spreadsheet Modelling

&
v

Turing
complete n

Software Languages "

Metatrix is the internal working name of the research being done into
underpinning the spreadsheet modeling paradigm, with firm programming

language features.

The functions capability in Sumwise is not recursive and therefore leaves

spreadsheets in their current state of not being Turing complete (ignoring
macro language — “the trapdoor”, and circular references - an inadequate and

forbidden solution is most cases).

Two orthogonal concepts that have the ability to add computational power
past the Turing completeness boundary, and are attractive from a “Conceptual

Dimension of Notation”, are presented.

1. Passing cell reference by address that can be used by optimization
formulae — “Taking the meta out of the menu”, and

2. Allowing nodes and tags to not only be named, but upgrading them to
formulae — “Dynamic Nodes”

Metatrix features include: Trees as the base building blocks, tree primitives

(intersect, attach, filter), optional schematic types, higher order models, meta-
circularity, among others.

Logical Cell Groups

Spreadsheets

= Matrix of variable, addressed by index:
— Rows - base 10 digits
— Columns — base 26 alphabetic

= More complex addressing by Functions

— Lookup & Reference functions

... @ group of cells, defined by the intersection of row and column metadata or
structure, that share common properties, such as formatting and/or formula.

Sumwise

= Rich addressing
—Tree structured Axes
—Named nodes
— Arbitrary metadata on nodes
— More legible reference
= Cell Groups
— Defines Behaviour under modification
— Fewer formulae

| 10 Percent Growth

feo R[10 Percent Growth]C[@Quarter . Children ? @Forecast]

10 11 12 13 15 16

=[@Month -1] * 1.1

What is a spreadsheet

- Matrix of variables, addressed by index

- List of named references — “Named Ranges”
- Complex references achieved via functions
Sumwise Cell Groups

- Allow cells to declaratively receive a formula

- Allows for richer referencing syntax and semantics

trapdoor Model as Functions]/'

Models as Functions without changing technologies

Spreadsheets Sumwise
= Limited encapsulation of complexity. * = Simple annotation of Cell Groups.
— Clever copy and paste = Requires
—Named Ranged — Named reference — Matrix cell values
definitions
—Tuples

— e — T N
< ol) T TN () T XE 2 Ol resnmass o]

B [T R{/Celsus) C[/Tests.chidren) €
fus R{/Falivenher] C[/Tests.chidren] CelsasToF ahrenher2([Celsis] Jm :’\
B [T Ri/Expected) C[/Tests.chidren] \) o RYFobvenhet] CU/ALretun - % o) 6 32
) 7 R{/Assert] C[/Tests.chidren] =f([Fahrenhet]=(Expected),0,1) TR ——
B 7w R{/OHM) Cl/Tests.chidren] =([Fahrenhex];(Expected]) (}> \1-2
[fo RijAssert) O/ 1,0)

I =

|

L L

Models as functions
- Achieved by the annotation of cell group as arguments or returns.

- This implementation favoured from a CDN view point

—
- »

‘Taking the meta out of the menu

Solver Parameters
Set Target Cell: E]
6] L ARg “'—J o EqualTo: @OMax OMa Ovaeof: |0
e| What-If Group Ungroup Subtotal 3
e ||| d B (s]
1 Sybject to the Constraints:
Scenario Manager... ptline LR -
Goal Seek... m
— ~ Change
?|x] T
™ - Delete
Help
| setcel: Al £
| To value: 0
By changing cell: | A2 B
[OK] [Cancel l

=GoalSeek(\Meta\[NVP], 0, [IRR])

What spreadsheet functions can’t be written as Models as functions?
Two classes of these;
1. Part of the machinery. Mainly reference functions, eg. Indirect, address

- Can be solved with Meta Circularity, topic for another time.

2. Require loops, conditionals (i.e. Turing completeness).

- Could be solved with recursion, but isn’t very friendly to end-user
programmers. Not a good notation for the types of problems being
solved, eg IRR.

- Circular references, but can be non-deterministic — if solution doesn’t
converge. Not a neat solution - frowned upon in modelling. Only solves a
small set of problems.

- Metatrix’s preferred solution is References by Address (“Meta”
references)

- Works for optimisation formulae, Currently need to use goal seek
from the menu.

- GoalSeek formulae using “meta” referencing could be placed in a
cell or in a one dimensional axis (one dimensional axes are similar

N d

Talzing the meta out of the menu

Cell Groups

=SetFormula (
\Meta\R[10 Percent Growth]C[@Quarter . Children ? @Forecast] ,

“=[@Month -1]*1.1",
[Priors, Ancestors] // Group Override

Formula Cell Groups effectively use “meta” references to define the formulae in

cells.

- =FormulaGroup(\Meta\R[10 Percent Growth]C[@Quarter . Children ?
@Forecast] , “=[@Month -1]*1.1")

Other Meta that could be taken out of the menu are;

- Creation of nodes. This could be achieved with schemas structure imposed
on Axes or Node

- Nodes create for Schema compliance

Eg. Schema applied to an axis. Any node tagged Header must have
specified children with specified tags.
@Header{Hardware,Software,Service,*, Total[Summary]}

Models can be considered as types, Models with schema are
statically typed structures.

Dynamic Nodes r

Dimensionality+

=Periods.QuartersWithMonths! [All]

S S

L}
|} |
L L
moEm

Dimensionality:

Examples of: Lotus Improv, Quantrix, Pivot Tables

Dynamic Nodes go further then this as structure could be referenced.

These proposed extension are therefore a super of on both spreadsheet
and multi-dimensional modelling paradigm.

A nice enabling feature is linked values, where a change in any number of
place is reflected in all.

ar
Dynamic Nodes

Multi-Output Formulae + Groups

Excel

= Features do not exist

= Can be simulated in specific case
—Unique via Advanced Filter with a copy
— Formula propagation via External Import

=Unique({3,2,1,1,2,3})

Google Docs

= Continued Formula

= Formula propagation doesn’t exist

Alternative

= Array Formulae

Multi output Array Formulae, Filtering, Sorting, Unique list
Repeated Dimension (with structure), Pivot tables, Filtered Views

Combined with the orthogonal notion of Cell Groups leads to highly expressive

models.

- Knows how to grow and adapt to modifications

- To some extend can be achieved via Array Formulae, but Dynamic Nodes

are score better or CDN

- Don’t need to teach the a new concept (iterators, array formulae ...)

- More consistent

Dynamic Nodes

Recursion - Future work

= Tree referencing & coping
= Termination by Conditionals in Dynamic Nodes

= Termination using Meta reference to Nodes

— Formula Based Tags

= Termination with the exist of “return” cells

Future investigation

Recursive dynamic nodes

Node values/formulae defined by “meta” definition in the same way as cell
groups

Dynamic or formula based tags on nodes
- Used from definition of computation

These are considered advanced features and might only be used by library
writers.

10

Further Work

Get ride of more Spreadsheet machinery
- Meta Circularity
Provide insight into dependency (dag) analysis

Optional Types (Schemas)
Higher Order Models

Future investigation

Recursive dynamic nodes
Node values/formulae defined by “meta” definition in the same way as cell
groups
Dynamic or formula based tags on nodes
- Used from definition of computation

11

Interesting Language Space
Programming by Demonstration

Questions S sl

Example Centric Programming
lllustrative Programming

Pure Declarative Paradigm
Content expertise 2012 Estimate Number of

Programmers US Workforce

Cognitive match

. . Professionals 3M
Lends itself to Parallelism
Error Prone, Brittle End-Users 13M

Hardly changed in 25 years

OODDONND
DOODDOD®

L T Y

That’s it. Questions.

Some reasons | find this an interesting area.

