Programming hybrid systems with synchronous
languages

Timothy Bourke!?2

Albert Benveniste! Benoit Caillaud® Marc Pouzet®!

1. INRIA

2. Ecole normale supérieure (LIENS)

y 4

: informatics 4% mathematics

SAPLING 2011, November 18, Sydney, Australia

discrete controller

continuous environment

discrete controller continuous environment

Dassault Systémes Delmia and Catia http://www.3ds.com/products

Outline

Dataflow programming

Research objectives

Continuous modelling and simulation

Typing and compilation

Demonstration and conclusion

Dataflow programming: core concepts

Programming with streams

Dataflow programming: core concepts

Programming with streams

constants 1 = 1 1

Dataflow programming: core concepts

Programming with streams

constants 1 = 1 1 1 1

operators x+y =Xx+W x1t+y1 xx+y: x3+y3

Dataflow programming: core concepts

Programming with streams

constants 1 = 1 1 1 1

operators x+y =Xx+W x1t+y1 xx+y: x3+y3

unit delay 0 fby (x +y) = 0 X+Yo Xx1+tx1 X+Xx

Dataflow programming: core concepts

Programming with streams

constants 1 = 1 1 1 1
operators X +y =Xot+tY X1+tYy1 X2+yr X3+y3
unit delay Ofby (x +y)= 0 X0+Y x1+x1 x4+ x

Programm|ng W|th |terat|ng machlnes Caspi and Pouzet. A Co-iterative Characterization of

Synchronous Stream Functions. 1998

Dataflow programming: core concepts

Programming with streams

constants 1 = 1 1 1 1
operators X +y =Xot+tY X1+tYy1 X2+yr X3+y3
unit delay Ofby (x +y)= 0 X0+Y x1+x1 x4+ x

PrOgl’ammlng W|th |terat|ng machlnes Caspi and Pouzet. A Co-iterative Characterization of

Synchronous Stream Functions. 1998

let one () =1

Dataflow programming: core concepts

Programming with streams

constants 1 = 1 1 1 1
operators X +y =Xot+tY X1+tYy1 X2+yr X3+y3
unit delay Ofby (x +y)= 0 X0+Y x1+x1 x4+ x

Programm|ng W|th |terat|ng machlnes Caspi and Pouzet. A Co-iterative Characterization of

Synchronous Stream Functions. 1998

let one () =1

let add x y = x + vy

Dataflow programming: core concepts

Programming with streams

constants 1 = 1 1 1 1
operators x +y =X+Yo x1ty1 xx+y» X3+y3
unit delay 0 fby (x +y) = 0 X+Yo Xx1+tx1 X+Xx

Caspi and Pouzet. A Co-iterative Characterization of
Synchronous Stream Functions. 1998

Programming with iterating machines
let one () =1 let delay () = { init = true; pre = nil }

let add x y = x + v let delay_step self x y =
let result =

if self.init then x else self.pre in
self.pre <— vy;
self.init <— false;
result

let delay_reset self = self.init <— true

Dataflow programming: composition and syntax

V=C*X —exy

Dataflow programming: composition and syntax

u=bxx—dxy+ (0.0 fby v)

and v =c*xXx —exy

Dataflow programming: composition and syntax

rec y =ax*x + (0.0 fby u)

and u =bxx —dx*y+ (0.0 fby v)

and v =cxXx —exy

Dataflow programming: composition and syntax

rec y =ax*x + (0.0 fby u)

and u =bxx —d=x*y+ (0.0 fby v)

and v =c*xXx —exy

Dataflow programming: composition and syntax

let node iir_filter_2 x =y where

rec y =a*x + (0.0 fby u)
and u=bxx—d=xy+ (0.0 fby v)

and v =c*xXx —exy

(Mixed) Dataflow programming: control structures

let node counter (flip, stop) = x
where
rec Ix = 0 fby x
and automaton
| Up—
do
x = Ix +1
until flip then Down
| stop then Stop(true)
done

| Down —
do
x = Ix —1
until flip then Up
| stop then Stop(false)
done

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| toggle then Down
done
end

—(Ix =0 fby x
flip

o w9
(=¥F
x =+l stop(t) stop(f)
e
flip & was_up Stop

x = Ix

(Mixed) Dataflow programming: control structures

let node counter (flip, stop) = x
where
o5 (1x =0 Thy)
and automaton
— [(Up—
do
x = Ix + 1
until flip then Down
| stop then Stop(true)
done
| Down —
do
x = Ix —1
until flip then Up
| stop then Stop(false)
done

| Stop(was_up) —
do
x = Ix
until

flip & was_up then Up

| toggle then Down

done
end

—(Ix 0 fby x
flip

%
Up O
x =1Ix +1

stop(f)

5 stop(t)
O
flip & was_up Stop

x = Ix

(Mixed) Dataflow programming: control structures

let node counter (flip, stop) = x
where
rec(Ix = 0 fby x
and automaton
[(Up—
do
x = Ix + 1
until flip then Down
| stop then Stop(true)
done
| Down —
do
x = Ix —1
until flip then Up
| stop then Stop(false)
done

| Stop(was_up) —
do
x = Ix
until

flip & was_up then Up

| toggle then Down

done
end

—(Ix 0 fby x
flip

%
Up O
x =1Ix +1

stop(f)

5 stop(t)
O
flip & was_up Stop

x = Ix

(Mixed) Dataflow programming: control structures

let node counter (flip, stop) = x
where
rec(Ix = 0 fby x
and automaton
[(Up—
do
x = Ix + 1
(until flip then Down)
[stop then Stop(true)
done

| Down —
do
x = Ix —1
until flip then Up
| stop then Stop(false)
done

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| toggle then Down
done
end

—(Ix 0 fby x
flip

%
&
= 1
et stop(t)
O

stop(f)

flip & was_up Stop

x = Ix

(Mixed) Dataflow programming: control structures

let node counter (flip, stop) = x
where
rec(Ix = 0 fby x
and automaton
| Up—
do
x = Ix + 1
until flip then Down
| stop then Stop(true)
done
| (Down —
do
x = Ix —1
until flip then Up
| stop then Stop(false)
done

| Stop(was_up) —
do
x = Ix
until

flip & was_up then Up

| toggle then Down

done
end

—(Ix 0 fby x
flip

< m %
Up O
x=1Ix+1

stop(f)

5 stop(t)
O
flip & was_up Stop

x = Ix

(Mixed) Dataflow programming: control structures

let node counter (flip, stop) = x
where
rec(Ix = 0 fby x
and automaton
| Up—
do
x = Ix + 1
until flip then Down
| stop then Stop(true)
done
| (Down —
do
x = Ix —1
until flip then Up
(] _stop then Stop(false
done

| Stop(was_up) —
do
x = Ix
until

flip & was_up then Up

| toggle then Down

done
end

—(Ix 0 fby x
flip

< w9
(¥0Y
x =+l stop(t) stop
O
flip & was_

x = Ix

(Mixed) Dataflow programming: control structures

let node counter (flip,
where

rec(Ix = 0 fby x

and automaton

| Up—
do
x = Ix + 1
until flip then
| stop then
done
| Down —
do
x = Ix —1
until flip then
| stop then
done

stop) = x

Down
Stop(true)

Up
Stop(false)

|(Stop(was_up) —
do
x = Ix
until

flip & was_up then Up

| toggle then Down

done

end

—(Ix 0 fby x
flip

< m %
Up O
x=1Ix+1

stop(f)

5 stop(t)
O
flip & was_up Stop

x = Ix

(Mixed) Dataflow programming: control structures

—(Ix =0 fby x
flip

let node counter (flip,
where
rec Ix = 0 fby x
and automaton
| Up—
do

stop) = x

x = Ix +1
until flip then Down
| stop then Stop(true)
done

| Down —
do
x = Ix —1
until flip then Up
| stop then Stop(false)
done

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| toggle then Down
done
end

v

flip & was_up

Up O Down
x=1Ix+1 x=Ix —1
Q

stop(t) stop(f) 5
e %

x = Ix

(Parameterized) modes
contain definitions, incl. automata

until: weak preemption (test after)
unless: strong preemption (test before)
then: enter-with-reset

continue: entry-by-history

(Mixed) Dataflow programming: control structures

let node counter (flip, stop) = x x = 0 fby x flip

where
rec Ix = 0 fby x
and automaton

o
Up O Down

| Up— x =Ix +1 x=Ix -1
do 5 stop(t) stop(f) 5
x = Ix +1 ‘. Q
until flip then Down . Sto
| stop then Stop(true) flip & was_up
done
| Down — P 1 d d
do > arameterize modaes
x = Ix —1

T contain definitions, incl. automata
p then Up

| stop then Stop(false)

done > until: weak preemption (test after)
| Stop(was_up) = > unless: strong preemption (test before)
o
x = Ix . H
until flip & was_up them Up > then: enter-with-reset
| toggle then Down . .
done > continue: entry-by-history
end
Iexm.g/ > typmg/_ »| automata — -+ —| scheduling »| code gen.
parsing caus. /init.

Colaco, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures

let node counter (flip, stop) = x x = 0 fby x flip

where
rec Ix = 0 fby x
and automaton

o
Up O Down

| Up— x =Ix +1 x=Ix -1
do 5 stop(t) stop(f)
x = Ix +1 ‘. Q
until flip then Down . Sto
| stop then Stop(true) flip & was_up
done
| Down — P 1 d d
do > arameterize modaes
x = Ix —1

T contain definitions, incl. automata
p then Up

| stop then Stop(false)

done > until: weak preemption (test after)
| stop(was_up) > unless: strong preemption (test before)
o
x = Ix . H
until flip & was_up then Up " then: enter-with-reset
| toggle then Down . .
done > continue: entry-by-history
end
lexing/ typing/ .
. > - »| automata — -+ —| scheduling »| code gen.
parsing caus. /init.

Colaco, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures

let node counter (flip, stop) = x x = 0 fby x flip

where
rec Ix = 0 fby x
and automaton

o
Up O Down

| Up— x =Ix +1 x=Ix -1
do 5 stop(t) stop(f)
x = Ix +1 ‘. Q
until flip then Down . Sto
| stop then Stop(true) flip & was_up
done
| Down — P 1 d d
do > arameterize modaes
x = Ix —1

T contain definitions, incl. automata
p then Up

| stop then Stop(false)

done > until: weak preemption (test after)
| Stop(was_up) = > unless: strong preemption (test before)
o
x = Ix . H
until flip & was_up them Up > then: enter-with-reset
| toggle then Down . .
done > continue: entry-by-history
end
lexing/ typing/ .
. > L > automata — .-+ —| scheduling »| code gen.
parsing caus. /init.

Colaco, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures

let node counter (flip, stop) = x x = 0 fby x flip

where
rec Ix = 0 fby x
and automaton

o
Up O Down

| Up— x =Ix +1 x=Ix -1
do 5 stop(t) stop(f)
x = Ix +1 ‘. Q
until flip then Down . Sto
| stop then Stop(true) flip & was_up
done
| Down — P 1 d d
do > arameterize modaes
x = Ix —1

T contain definitions, incl. automata
p then Up

| stop then Stop(false)

done > until: weak preemption (test after)
| Stop(was_up) = > unless: strong preemption (test before)
o
x = Ix . H
until flip & was_up them Up > then: enter-with-reset
| toggle then Down . .
done > continue: entry-by-history
end
Iexm.g/ > typmg/_ »| automata — -+ —| scheduling »| code gen.
parsing caus. /init.

Colaco, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures

let node counter (flip, stop) = x x = 0 fby x flip

where
rec Ix = 0 fby x
and automaton

o
Up O Down

| Up— x =Ix +1 x=Ix -1
do 5 stop(t) stop(f) 5
x = Ix +1 ‘. Q
until flip then Down . Sto
| stop then Stop(true) flip & was_up
done
| Down — P 1 d d
do > arameterize modaes
x = Ix —1

T contain definitions, incl. automata
p then Up

| stop then Stop(false)

done > until: weak preemption (test after)
| Stop(was_up) = > unless: strong preemption (test before)
o
x = Ix . H
until flip & was_up them Up > then: enter-with-reset
| toggle then Down . .
done > continue: entry-by-history
end
Iexm.g/ > typmg/_ »| automata — -+ —| scheduling »| code gen.
parsing caus. /init.

Colaco, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures

let node counter (flip, stop) = x x = 0 fby x flip

where
rec Ix = 0 fby x
and automaton

o
Up O Down

| Up— x =Ix +1 x=Ix -1
do 5 stop(t) stop(f)
x = Ix +1 ‘. Q
until flip then Down . Sto
| stop then Stop(true) flip & was_up
done
| Down — P 1 d d
do > arameterize modaes
x = Ix —1

T contain definitions, incl. automata
p then Up

| stop then Stop(false)

done > until: weak preemption (test after)
| Stop(was_up) = > unless: strong preemption (test before)
o
x = Ix . H
until flip & was_up them Up > then: enter-with-reset
| toggle then Down . .
done > continue: entry-by-history
end
Iexm.g/ > typmg/_ > automata — .-+ —{ scheduling »| code gen.
parsing caus. /init.

Colaco, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures

let node counter (flip, stop) = x x = 0 fby x flip

where
rec Ix = 0 fby x
and automaton

o
Up O Down

| Up— x =Ix +1 x=Ix -1
do 5 stop(t) stop(f)
x = Ix +1 ‘. Q
until flip then Down . Sto
| stop then Stop(true) flip & was_up
done
| Down — P 1 d d
do > arameterize modaes
x = Ix —1

T contain definitions, incl. automata
p then Up

| stop then Stop(false)

done > until: weak preemption (test after)
| Stop(was_up) = > unless: strong preemption (test before)
o
x = Ix . H
until flip & was_up them Up > then: enter-with-reset
| toggle then Down . .
done > continue: entry-by-history
end
Iexm.g/ > typmg/_ »| automata — -+ —| scheduling »| code gen.
parsing caus. /init.

Colaco, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

Dataflow programming languages

Kahn. The Semantics of a Simple Language for
» Kahn Networks :
Parallel Programming 1974. Asynch ronous
> L Cld Wadge and Ashcroft. LUCID, the dataflow

u programming language. 1985.

Dataflow programming languages

Kahn NetWOFkS Kahn. The Semantics of a Simple Language for

Parallel Programming 1974 Asynch ronous
LUC|d Wadge and Ashcroft. LUCID, the dataflow

programming language. 1985

v

v

Caspi, Pilaud, Halbwachs, and Plaice. Lustre: A Declarative —

LUStre Language for Programming Synchronous Systems. 1987. Synchronous
» Clock calculus
» Deterministic, bounded memory, bounded execution time

v

v

SCADE 6 http://www.esterel-technologies.com /products/scade-suite/
» Industrial (extended) version of Lustre
» Used in critical systems (DO-178B certified)
> Airbus flight control; Train braking; Nuclear safety

v

Lucid Synchrone caspi and Pouzet. A Functional Extension to Lustre. 1095,
» Higher-order dataflow
» Hierarchical automata
» Signals _

Dataflow programming languages

Kahn NetWOFkS Kahn. The Semantics of a Simple Language for

Parallel Programming 1974 Asynch ronous
LUC|d Wadge and Ashcroft. LUCID, the dataflow

programming language. 1985

v

v

Caspi, Pilaud, Halbwachs, and Plaice. Lustre: A Declarative —

LUStre Language for Programming Synchronous Systems. 1987. Synchronous
» Clock calculus
» Deterministic, bounded memory, bounded execution time

v

v

SCADE 6 http://www.esterel-technologies.com /products/scade-suite/
» Industrial (extended) version of Lustre
» Used in critical systems (DO-178B certified)
> Airbus flight control; Train braking; Nuclear safety

v

Lucid Synchrone caspi and Pouzet. A Functional Extension to Lustre. 1095,
» Higher-order dataflow
» Hierarchical automata
» Signals _

v

Ptolemy http://ptolemy.eecs.berkeley.edu/

v

(Subsets Of) Slmullnk (and Stateﬂow) http://www.mathworks.com /products/simulink /

So, what's to do?

» We want a language for programming complex discrete systems
and modelling their physical environments

» (Also: embedded software that includes physical models)

So, what's to do?

» We want a language for programming complex discrete systems
and modelling their physical environments

> (Also: embedded software that includes physical models)

» Something like Simulink/Stateflow, but
» Simpler and more consistent semantics and compilation
» Better understand interactions between discrete and continuous
» Simpler treatment of automata
» Certifiability for the discrete parts

Understand and improve the design of such modelling tools

Approach

» Add Ordinary Differential Equations to an existing synchronous
language
» Two concrete reasons:

> Increase modelling power (hybrid programming)
» Exploit existing compiler (target for code generation)

Approach

» Add Ordinary Differential Equations to an existing synchronous
language

» Two concrete reasons:

> Increase modelling power (hybrid programming)
» Exploit existing compiler (target for code generation)

» Simulate with an external off-the-shelf numerical solver
(Sundlals CVODE Hindmarsh et al. SUNDIALS: Suite of nonlinear and)

1 differential /algebraic equation solvers. 2005

Approach

v

Add Ordinary Differential Equations to an existing synchronous
language

» Two concrete reasons:

> Increase modelling power (hybrid programming)
» Exploit existing compiler (target for code generation)

Simulate with an external off-the-shelf numerical solver
(Sundlals CVODE Hindmarsh et al. SUNDIALS: Suite of nonlinear and)
1

differential /algebraic equation solvers. 2005

v

v

Conservative extension: synchronous functions are compiled,
optimized, and executed as per usual.

Outline

Dataflow programming

Research objectives

Continuous modelling and simulation

Typing and compilation

Demonstration and conclusion

Bouncing ball

model

F=m-a
d?h(t)
ETM T
d*h(t) /
de2

Bou

model

ncing ball

v=—g/m v(0) = wo
h=v h(0) = ho

Causal first-order ODEs

F=m-a
d?h(t)
M e
d*h(t) /
a2

Bouncing ball

model

v=—g/m v(0) = wo
h=v h(0) = ho

Causal first-order ODEs

F=m-a
d?h(t)
&= dt2
d*h(t) /
dt?
= —|—/ —g/m).d

Bouncing ball

model
@
F=m-a
d?h(t)
h — a2
d’h
I dt(2t) = —g/m
[v; h] = £(t, [v; h]) Solver S
approximation
¥i = [vo; ho] t
YO F v v(t) E vo —|—/0 (—g/m).dr
h(0) = ho h(t) ho + /t v(7).dT
0

Causal first-order ODEs

Bouncing ball

model
up(-h)
@

h
[uph] = g(t, [v; h])

—)

[V; h] = f(¢t,[v; h]) Solver
Yi = [vo; ho]

v(0) F v

h(0) [ho

Causal first-order ODEs

F=m-a
d?h(t)
N dt?
d?h(t)
prea

event!

Solver execution

Give solver two functions: dy = f,(t,y), upz = g,(t,y)

Solver execution

Give solver two functions: dy = f,(t,y), upz = g,(t,y)

Solver execution

Give solver two functions: dy = f,(t,y), upz = g,(t,y)

Solver execution

Give solver two functions: dy = f,(t,y), upz = g,(t,y)

fff

Il

Solver execution

Give solver two functions: dy = f,(t,y), upz = g,(t,y)

fff

1l

4

Solver execution

Give solver two functions: dy = f,(t,y), upz = g,(t,y)

fff f

Solver execution

Give solver two functions: dy = f,(t,y), upz = g,(t,y)

fff f f

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

fff f f f

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

fff f f f f

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

fff f f f ff

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

fff f f f fff

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

fff f f f fff f

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

fff f f f fff f f

t

2. expression crosses zero

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

fff f f f fff f f

t

2. expression crosses zero

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

fff f f f fff f f

t

2. expression crosses zero

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

fff f f f fff f f

g8 88

t

2. expression crosses zero

» Bigger and bigger steps (bound by hmin and hpmax)

Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

fff f f f fff f

t

2. expression crosses zero

» Bigger and bigger steps (bound by hmin and hpmax)
» t does not necessarily advance monotonically

> No side-effects within f or g

Bouncing ball

program
@
v=—g/m v(0) = wo
h
reset v to —0.8 - v when h becomes 0
[

let hybrid ball () =
let
rec der v = (—. g / m) init vO
reset (—. 0.8 x. lastv) every up(— h)
and der h = v init hO
in (v, h)

Outline

Dataflow programming

Research objectives

Continuous modelling and simulation

Typing and compilation

Demonstration and conclusion

Which programs make sense?

Given:

let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x

Which programs make sense?

Given:
let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x
Evaluate:

der time = 1.0 init 0.0
and
y = sum(time)

Which programs make sense?

Given: 10
let node sum(x) = cpt where 9
rec cpt = (0.0 fby cpt) +. x 5
Evaluate: 7
der time = 1.0 init 0.0 ’
and 5 _
y = sum(time) 4 time

Interpretation:

Which programs make sense?

Given: 10
let node sum(x) = cpt where 9
rec cpt = (0.0 fby cpt) +. x 5
Evaluate: 7
der time = 1.0 init 0.0 ’
and 5 _
y = sum(time) 4 time

Interpretation:
» Option 1: NCR

Which programs make sense?

Given: 10

let node sum(x) = cpt where 9

rec cpt = (0.0 fby cpt) +. x 5 o

Evaluate: 7

der time = 1.0 init 0.0 ’

and 5

[] .
y = sum(time) 4 time

Interpretation:
» Option 1: NCR

» Option 2: depends on solver 0

-
-

Which programs make sense?

Given: 10]
let node sum(x) = cpt where 9
rec cpt = (0.0 fby cpt) +. x 5
Evaluate: 7
der time = 1.0 init 0.0 ’
and 5 _
y = sum(time) 4 time

Interpretation:
» Option 1: NCR

» Option 2: depends on solver 0

» Option 3: infinitesimal steps 1

Which programs make sense?

Given: 10
let node sum(x) = cpt where 9

rec cpt = (0.0 fby cpt) +. x 5
Evaluate: 7

der t = 1.0 init 0.0
andX ° _
y =&um(time) 4 time

Interpretation:
» Option1: NCR

» Option 2: depends on solver 0

» Option 3: infinitesimal steps 1

» Option 4: type and reject 2

Which programs make sense?

Given:
let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x
Evaluate:

der time = 1.0 init 0.0
and
y = sum(time) every up(ez) init 0.0
Interpretation:
» Option1: NCR
» Option 2: depends on solver
» Option 3: infinitesimal steps

» Option 4: type and reject

10

time

ez

Which programs make sense?

Given:
let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x
Evaluate:

der time = 1.0 init 0.0
and
y = sum(time) every up(ez) init 0.0
Interpretation:
» Option1: NCR
» Option 2: depends on solver
» Option 3: infinitesimal steps

» Option 4: type and reject

Explicitly relate simulation and logical time (using zero-crossings)

10

time

ez

Try to minimize the effects of solver parameters and choices

Basic typing

The type language

bt = float |int |bool |zero D

t o= bt|txt|p \ /
k

o = VBi,....0nt —t

k == D|C|A A

Initial conditions

(+) : int xint —» int
(=) VBB x B 5 bool
if : VB.bool x B x 3 SN I}

fby- 1 VBB X B -8
up(-) : float —» zero

Compilation

® let hybrid ball () =
let
rec der v = (—. g / m) init v0
reset (—. 0.8 x. lastv) every up(-— h)
h and der h = v init hO
in (v, h)

Compilation

. let hybrid ball () =
let
rec der v = (—. g / m) init v0
reset (—. 0.8 x. lastv) every up(-. h)
h and der h = v init hO
in (v, h)

let node ball (z1, (lh, Iv), ()) =
let rec i = true fby false

and dv = (—. g / m)

and v = if i then vO
else if z1 then —. 0.8 =*. Iv
else |v

and dh = v

and h = if i then hO else |h

and upzl = —. h

in ((v, h), upzl, (h, v), (dh, dv))

Compilation

® let hybrid ball () =
let
rec/der v = (—. g / m) init v0
reset (—. 0.8 x. lastv) every up(-— h)

h and der h = v init hO
in \(v, h)
Pr——— let node b.aII (z1, (Ih, Iv), ()) =
let rec i = true fby false

and dv = (—. g / m)

and v = if i then vO
else if z1 then —. 0.8 =*. Iv
else |v
transform into discrete subset
and dh = v
and h = if i then hO else |h
and upzl = —. h

in ((v, h), upzl, (h, v), (dh, dv))

Compilation

® let hybrid ball () =

let

rec der, v =(—. g / m) init vO

reset (—. 0.8 x. lastv) every up(-. h)

h v init ho
— (z1, (th), () =
true fby false
. g/ m)
and v = if i then vO
else if z1 then —. 0.8 =*. Iv
else |v
transform continuous variables
and dh = v
and h = if i then hO else |h
and upzl = —. h

in ((v, h), upzl, (h, v), (dh, dv))

Compilation

let hybrid ball () =

let
rec der v = (—. g / m) init v0
reset (—. x. last v) every up(-. h)
and der h = v inj¥ h0O
in (v, h)

let node ball (z1, (lh, Iv), ())
let rec i = true fby false

and dv = (—. g / m)
and v = if i then v
else if zl1 then
else |v

Compilation

® let hybrid ball () =

let

rec der v = (—. init v0

. lastv) every up(-. h)

h and der h

in (v, h)
i — let node b. =
let rec i =
and dv = (—.
and v = if i
else if z1 then —. 0.8 =*. Iv
else |v

and dh Careful mixing of discrete and continuous
and h
» control discrete changes to respect invariant

and upz » branching (i.e. automata) is tricky

in ((v, h), upzl, (h, v), (dh, dv))

Source-to-source transformation

lexing/
parsing

A\

typing/
caus./init.

Y

automata

—>

scheduling

Y

code gen.

(dﬂ')

Source-to-source transformation

ODEs ?

Iexm.g/ & typ|ng./. »| automata — -+ —| scheduling »| code gen.
parsing caus./init.
(fo, 8o dor)
ode
Data-flow + Auto. + ODE ———— > Data-flow + Auto.
auto auto
ode codegen

Data-flow + ODE > Data-flow ——————— Imperative code

Source-to-source transformation

ODEs
Iexm.g/ & typ|ng./. »| automata -+ ——| scheduling »| code gen.
parsing caus./init.
(fo, 8o dor)
ode
Data-flow + Auto. + ODE ——— Data-flow + Auto.
auto auto
ode codegen
Data-flow + ODE > Data-flow ———— Imperative code

» Pro: simpler definition of ODE

» Con: subtle invariant over intermediate language

Source-to-source transformation

ODEs

Iexm.g/ & typ|ng./. ‘(= automata — .- —| scheduling »| code gen.
parsing caus./init.
(fo, 8o dor)

ode

Data-flow + Auto. + ODE ——— > Data-flow + Auto.

auto auto
ode codegen
Data-flow + ODE » Data-flow —————— Imperative code

» Pro: intermediate result is well-typed

» Pro/Con: ODE code must include cases for automata

Outline

Dataflow programming

Research objectives

Continuous modelling and simulation

Typing and compilation

Demonstration and conclusion

Demonstrations

» Bouncing ball (standard)
» Bang-bang temperature controller (Simulink/Stateflow)
» Sticky Masses (Ptolemy)

Conclusion

Conclusion

» Synchronous languages should and can properly treat hybrid systems

Conclusion

Conclusion

» Synchronous languages should and can properly treat hybrid systems
» There are three good reasons for doing so:

1. To exploit existing compilers and techniques

2. For programming the discrete subcomponents

3. To clarify underlying principles and guide language design/semantics

Conclusion

Conclusion

» Synchronous languages should and can properly treat hybrid systems
» There are three good reasons for doing so:

1. To exploit existing compilers and techniques

2. For programming the discrete subcomponents

3. To clarify underlying principles and guide language design/semantics
» Our approach
Hybrid dataflow language with hierarchical automata
System of kinds for rejecting unreasonable programs
Relate discrete to continuous via zero-crossings

Compilation via source-to-source transformations
Simulation using off-the-shelf numerical solvers

vy vV v VvYYy

Conclusion

Conclusion

» Synchronous languages should and can properly treat hybrid systems
» There are three good reasons for doing so:

1. To exploit existing compilers and techniques

2. For programming the discrete subcomponents

3. To clarify underlying principles and guide language design/semantics
» Our approach
Hybrid dataflow language with hierarchical automata
System of kinds for rejecting unreasonable programs
Relate discrete to continuous via zero-crossings

Compilation via source-to-source transformations
Simulation using off-the-shelf numerical solvers

vy vV v VvYYy

» Prototype compiler in OCaml using Sundials CVODE solver

	Dataflow programming
	Research objectives
	Continuous modelling and simulation
	Typing and compilation
	Demonstration and conclusion

