
Programming hybrid systems with synchronous
languages

Timothy Bourke1,2

Albert Benveniste1 Benoît Caillaud1 Marc Pouzet2,1

1. INRIA

2. École normale supérieure (LIENS)

SAPLING 2011, November 18, Sydney, Australia

discrete controller continuous environment

Dassault Systèmes Delmia and Catia http://www.3ds.com/products

discrete controller continuous environment

Dassault Systèmes Delmia and Catia http://www.3ds.com/products

Outline

Dataflow programming

Research objectives

Continuous modelling and simulation

Typing and compilation

Demonstration and conclusion

Dataflow programming: core concepts

Programming with streams

constants 1 = 1 1 1 1 · · ·

operators x + y = x0 + y0 x1 + y1 x2 + y2 x3 + y3 · · ·

unit delay 0 fby (x + y) = 0 x0 + y0 x1 + x1 x2 + x2 · · ·

Programming with iterating machines Caspi and Pouzet. A Co-iterative Characterization of
Synchronous Stream Functions. 1998.

Dataflow programming: core concepts

Programming with streams
constants 1 = 1 1 1 1 · · ·

operators x + y = x0 + y0 x1 + y1 x2 + y2 x3 + y3 · · ·

unit delay 0 fby (x + y) = 0 x0 + y0 x1 + x1 x2 + x2 · · ·

Programming with iterating machines Caspi and Pouzet. A Co-iterative Characterization of
Synchronous Stream Functions. 1998.

Dataflow programming: core concepts

Programming with streams
constants 1 = 1 1 1 1 · · ·

operators x + y = x0 + y0 x1 + y1 x2 + y2 x3 + y3 · · ·

unit delay 0 fby (x + y) = 0 x0 + y0 x1 + x1 x2 + x2 · · ·

Programming with iterating machines Caspi and Pouzet. A Co-iterative Characterization of
Synchronous Stream Functions. 1998.

Dataflow programming: core concepts

Programming with streams
constants 1 = 1 1 1 1 · · ·

operators x + y = x0 + y0 x1 + y1 x2 + y2 x3 + y3 · · ·

unit delay 0 fby (x + y) = 0 x0 + y0 x1 + x1 x2 + x2 · · ·

Programming with iterating machines Caspi and Pouzet. A Co-iterative Characterization of
Synchronous Stream Functions. 1998.

Dataflow programming: core concepts

Programming with streams
constants 1 = 1 1 1 1 · · ·

operators x + y = x0 + y0 x1 + y1 x2 + y2 x3 + y3 · · ·

unit delay 0 fby (x + y) = 0 x0 + y0 x1 + x1 x2 + x2 · · ·

Programming with iterating machines Caspi and Pouzet. A Co-iterative Characterization of
Synchronous Stream Functions. 1998.

Dataflow programming: core concepts

Programming with streams
constants 1 = 1 1 1 1 · · ·

operators x + y = x0 + y0 x1 + y1 x2 + y2 x3 + y3 · · ·

unit delay 0 fby (x + y) = 0 x0 + y0 x1 + x1 x2 + x2 · · ·

Programming with iterating machines Caspi and Pouzet. A Co-iterative Characterization of
Synchronous Stream Functions. 1998.

l e t one () = 1

Dataflow programming: core concepts

Programming with streams
constants 1 = 1 1 1 1 · · ·

operators x + y = x0 + y0 x1 + y1 x2 + y2 x3 + y3 · · ·

unit delay 0 fby (x + y) = 0 x0 + y0 x1 + x1 x2 + x2 · · ·

Programming with iterating machines Caspi and Pouzet. A Co-iterative Characterization of
Synchronous Stream Functions. 1998.

l e t one () = 1

l e t add x y = x + y

Dataflow programming: core concepts

Programming with streams
constants 1 = 1 1 1 1 · · ·

operators x + y = x0 + y0 x1 + y1 x2 + y2 x3 + y3 · · ·

unit delay 0 fby (x + y) = 0 x0 + y0 x1 + x1 x2 + x2 · · ·

Programming with iterating machines Caspi and Pouzet. A Co-iterative Characterization of
Synchronous Stream Functions. 1998.

l e t one () = 1

l e t add x y = x + y

l e t de l a y () = { i n i t = t r u e ; p re = n i l }

l e t de l a y_s t ep s e l f x y =
l e t r e s u l t =

i f s e l f . i n i t then x e l s e s e l f . p r e i n
s e l f . p r e <− y ;
s e l f . i n i t <− f a l s e ;
r e s u l t

l e t d e l a y_ r e s e t s e l f = s e l f . i n i t <− t r u e

Dataflow programming: composition and syntax

x

−

∗

∗

c

e

v

y

0 fby · +
−

∗

∗

b

d

u 0 fby · +

∗

a

y

let node iir_filter_2 x = y where

rec y = a ∗ x + (0.0 fby u)

and u = b ∗ x − d ∗ y + (0.0 fby v)

and v = c ∗ x − e ∗ y

Dataflow programming: composition and syntax

x

−

∗

∗

c

e

v 0 fby · +
−

∗

∗

b

d

u

y

0 fby · +

∗

a

y

let node iir_filter_2 x = y where

rec y = a ∗ x + (0.0 fby u)

and u = b ∗ x − d ∗ y + (0.0 fby v)

and v = c ∗ x − e ∗ y

Dataflow programming: composition and syntax

x

−

∗

∗

c

e

v 0 fby · +
−

∗

∗

b

d

u 0 fby · +

∗

a

y

let node iir_filter_2 x = y where

rec y = a ∗ x + (0.0 fby u)

and u = b ∗ x − d ∗ y + (0.0 fby v)

and v = c ∗ x − e ∗ y

Dataflow programming: composition and syntax

x

−

∗

∗

c

e

v 0 fby · +
−

∗

∗

b

d

u 0 fby · +

∗

a

y

let node iir_filter_2 x = y where

rec y = a ∗ x + (0.0 fby u)

and u = b ∗ x − d ∗ y + (0.0 fby v)

and v = c ∗ x − e ∗ y

Dataflow programming: composition and syntax

x

−

∗

∗

c

e

v 0 fby · +
−

∗

∗

b

d

u 0 fby · +

∗

a

y

let node iir_filter_2 x = y where

rec y = a ∗ x + (0.0 fby u)

and u = b ∗ x − d ∗ y + (0.0 fby v)

and v = c ∗ x − e ∗ y

(Mixed) Dataflow programming: control structures
l e t node coun t e r (f l i p , s top) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop (t r u e)
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop (f a l s e)
done

| Stop (was_up)→
do

x = l x
u n t i l f l i p & was_up then Up

| t o g g l e then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures
l e t node coun t e r (f l i p , s top) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop (t r u e)
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop (f a l s e)
done

| Stop (was_up)→
do

x = l x
u n t i l f l i p & was_up then Up

| t o g g l e then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures
l e t node coun t e r (f l i p , s top) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop (t r u e)
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop (f a l s e)
done

| Stop (was_up)→
do

x = l x
u n t i l f l i p & was_up then Up

| t o g g l e then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures
l e t node coun t e r (f l i p , s top) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop (t r u e)
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop (f a l s e)
done

| Stop (was_up)→
do

x = l x
u n t i l f l i p & was_up then Up

| t o g g l e then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures
l e t node coun t e r (f l i p , s top) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop (t r u e)
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop (f a l s e)
done

| Stop (was_up)→
do

x = l x
u n t i l f l i p & was_up then Up

| t o g g l e then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures
l e t node coun t e r (f l i p , s top) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop (t r u e)
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop (f a l s e)
done

| Stop (was_up)→
do

x = l x
u n t i l f l i p & was_up then Up

| t o g g l e then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures
l e t node coun t e r (f l i p , s top) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop (t r u e)
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop (f a l s e)
done

| Stop (was_up)→
do

x = l x
u n t i l f l i p & was_up then Up

| t o g g l e then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures
l e t node coun t e r (f l i p , s top) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop (t r u e)
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop (f a l s e)
done

| Stop (was_up)→
do

x = l x
u n t i l f l i p & was_up then Up

| t o g g l e then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

I (Parameterized) modes
contain definitions, incl. automata

I until : weak preemption (test after)
I unless: strong preemption (test before)
I then: enter-with-reset
I continue: entry-by-history

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures
l e t node coun t e r (f l i p , s top) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop (t r u e)
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop (f a l s e)
done

| Stop (was_up)→
do

x = l x
u n t i l f l i p & was_up then Up

| t o g g l e then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

I (Parameterized) modes
contain definitions, incl. automata

I until : weak preemption (test after)
I unless: strong preemption (test before)
I then: enter-with-reset
I continue: entry-by-history

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures
l e t node coun t e r (f l i p , s top) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop (t r u e)
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop (f a l s e)
done

| Stop (was_up)→
do

x = l x
u n t i l f l i p & was_up then Up

| t o g g l e then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

I (Parameterized) modes
contain definitions, incl. automata

I until : weak preemption (test after)
I unless: strong preemption (test before)
I then: enter-with-reset
I continue: entry-by-history

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures
l e t node coun t e r (f l i p , s top) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop (t r u e)
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop (f a l s e)
done

| Stop (was_up)→
do

x = l x
u n t i l f l i p & was_up then Up

| t o g g l e then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

I (Parameterized) modes
contain definitions, incl. automata

I until : weak preemption (test after)
I unless: strong preemption (test before)
I then: enter-with-reset
I continue: entry-by-history

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures
l e t node coun t e r (f l i p , s top) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop (t r u e)
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop (f a l s e)
done

| Stop (was_up)→
do

x = l x
u n t i l f l i p & was_up then Up

| t o g g l e then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

I (Parameterized) modes
contain definitions, incl. automata

I until : weak preemption (test after)
I unless: strong preemption (test before)
I then: enter-with-reset
I continue: entry-by-history

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures
l e t node coun t e r (f l i p , s top) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop (t r u e)
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop (f a l s e)
done

| Stop (was_up)→
do

x = l x
u n t i l f l i p & was_up then Up

| t o g g l e then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

I (Parameterized) modes
contain definitions, incl. automata

I until : weak preemption (test after)
I unless: strong preemption (test before)
I then: enter-with-reset
I continue: entry-by-history

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures
l e t node coun t e r (f l i p , s top) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop (t r u e)
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop (f a l s e)
done

| Stop (was_up)→
do

x = l x
u n t i l f l i p & was_up then Up

| t o g g l e then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

I (Parameterized) modes
contain definitions, incl. automata

I until : weak preemption (test after)
I unless: strong preemption (test before)
I then: enter-with-reset
I continue: entry-by-history

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

(Mixed) Dataflow programming: control structures
l e t node coun t e r (f l i p , s top) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop (t r u e)
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop (f a l s e)
done

| Stop (was_up)→
do

x = l x
u n t i l f l i p & was_up then Up

| t o g g l e then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

I (Parameterized) modes
contain definitions, incl. automata

I until : weak preemption (test after)
I unless: strong preemption (test before)
I then: enter-with-reset
I continue: entry-by-history

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.

Dataflow programming languages
I Kahn Networks Kahn. The Semantics of a Simple Language for

Parallel Programming 1974.

I Lucid Wadge and Ashcroft. LUCID, the dataflow
programming language. 1985.

Asynchronous

I Lustre Caspi, Pilaud, Halbwachs, and Plaice. Lustre: A Declarative
Language for Programming Synchronous Systems. 1987.

I Clock calculus
I Deterministic, bounded memory, bounded execution time

I SCADE 6 http://www.esterel-technologies.com/products/scade-suite/

I Industrial (extended) version of Lustre
I Used in critical systems (DO-178B certified)
I Airbus flight control; Train braking; Nuclear safety

I Lucid Synchrone Caspi and Pouzet. A Functional Extension to Lustre. 1995.

I Higher-order dataflow
I Hierarchical automata
I Signals

Synchronous

I Ptolemy http://ptolemy.eecs.berkeley.edu/

I (subsets of) Simulink (and Stateflow) http://www.mathworks.com/products/simulink/

Dataflow programming languages
I Kahn Networks Kahn. The Semantics of a Simple Language for

Parallel Programming 1974.

I Lucid Wadge and Ashcroft. LUCID, the dataflow
programming language. 1985.

Asynchronous

I Lustre Caspi, Pilaud, Halbwachs, and Plaice. Lustre: A Declarative
Language for Programming Synchronous Systems. 1987.

I Clock calculus
I Deterministic, bounded memory, bounded execution time

I SCADE 6 http://www.esterel-technologies.com/products/scade-suite/

I Industrial (extended) version of Lustre
I Used in critical systems (DO-178B certified)
I Airbus flight control; Train braking; Nuclear safety

I Lucid Synchrone Caspi and Pouzet. A Functional Extension to Lustre. 1995.

I Higher-order dataflow
I Hierarchical automata
I Signals

Synchronous

I Ptolemy http://ptolemy.eecs.berkeley.edu/

I (subsets of) Simulink (and Stateflow) http://www.mathworks.com/products/simulink/

Dataflow programming languages
I Kahn Networks Kahn. The Semantics of a Simple Language for

Parallel Programming 1974.

I Lucid Wadge and Ashcroft. LUCID, the dataflow
programming language. 1985.

Asynchronous

I Lustre Caspi, Pilaud, Halbwachs, and Plaice. Lustre: A Declarative
Language for Programming Synchronous Systems. 1987.

I Clock calculus
I Deterministic, bounded memory, bounded execution time

I SCADE 6 http://www.esterel-technologies.com/products/scade-suite/

I Industrial (extended) version of Lustre
I Used in critical systems (DO-178B certified)
I Airbus flight control; Train braking; Nuclear safety

I Lucid Synchrone Caspi and Pouzet. A Functional Extension to Lustre. 1995.

I Higher-order dataflow
I Hierarchical automata
I Signals

Synchronous

I Ptolemy http://ptolemy.eecs.berkeley.edu/

I (subsets of) Simulink (and Stateflow) http://www.mathworks.com/products/simulink/

So, what’s to do?

I We want a language for programming complex discrete systems
and modelling their physical environments

I (Also: embedded software that includes physical models)

I Something like Simulink/Stateflow, but
I Simpler and more consistent semantics and compilation
I Better understand interactions between discrete and continuous
I Simpler treatment of automata
I Certifiability for the discrete parts

Understand and improve the design of such modelling tools

So, what’s to do?

I We want a language for programming complex discrete systems
and modelling their physical environments

I (Also: embedded software that includes physical models)

I Something like Simulink/Stateflow, but
I Simpler and more consistent semantics and compilation
I Better understand interactions between discrete and continuous
I Simpler treatment of automata
I Certifiability for the discrete parts

Understand and improve the design of such modelling tools

Approach

I Add Ordinary Differential Equations to an existing synchronous
language

I Two concrete reasons:
I Increase modelling power (hybrid programming)
I Exploit existing compiler (target for code generation)

I Simulate with an external off-the-shelf numerical solver
(Sundials CVODE, Hindmarsh et al. SUNDIALS: Suite of nonlinear and

differential/algebraic equation solvers. 2005.)

I Conservative extension: synchronous functions are compiled,
optimized, and executed as per usual.

Approach

I Add Ordinary Differential Equations to an existing synchronous
language

I Two concrete reasons:
I Increase modelling power (hybrid programming)
I Exploit existing compiler (target for code generation)

I Simulate with an external off-the-shelf numerical solver
(Sundials CVODE, Hindmarsh et al. SUNDIALS: Suite of nonlinear and

differential/algebraic equation solvers. 2005.)

I Conservative extension: synchronous functions are compiled,
optimized, and executed as per usual.

Approach

I Add Ordinary Differential Equations to an existing synchronous
language

I Two concrete reasons:
I Increase modelling power (hybrid programming)
I Exploit existing compiler (target for code generation)

I Simulate with an external off-the-shelf numerical solver
(Sundials CVODE, Hindmarsh et al. SUNDIALS: Suite of nonlinear and

differential/algebraic equation solvers. 2005.)

I Conservative extension: synchronous functions are compiled,
optimized, and executed as per usual.

Outline

Dataflow programming

Research objectives

Continuous modelling and simulation

Typing and compilation

Demonstration and conclusion

Bouncing ball
model

h

F = m · a

−g = m · d2h(t)
dt2

d2h(t)
dt2 = −g/m

v̇ = −g/m v(0) = v0
ḣ = v h(0) = h0

Causal first-order ODEs

v(t) = v0 +
∫ t

0
(−g/m) .dτ

h(t) = h0 +
∫ t

0
v(τ) .dτ

Ideal solution

Solver[v̇ ; ḣ] = f(t, [v ; h])

yi = [v0; h0]

approximation

[uph] = g(t, [v ; h])

event!

up(-h)

Bouncing ball
model

h

F = m · a

−g = m · d2h(t)
dt2

d2h(t)
dt2 = −g/m

v̇ = −g/m v(0) = v0
ḣ = v h(0) = h0

Causal first-order ODEs

v(t) = v0 +
∫ t

0
(−g/m) .dτ

h(t) = h0 +
∫ t

0
v(τ) .dτ

Ideal solution

Solver[v̇ ; ḣ] = f(t, [v ; h])

yi = [v0; h0]

approximation

[uph] = g(t, [v ; h])

event!

up(-h)

Bouncing ball
model

h

F = m · a

−g = m · d2h(t)
dt2

d2h(t)
dt2 = −g/m

v̇ = −g/m v(0) = v0
ḣ = v h(0) = h0

Causal first-order ODEs

v(t) = v0 +
∫ t

0
(−g/m) .dτ

h(t) = h0 +
∫ t

0
v(τ) .dτ

Ideal solution

Solver[v̇ ; ḣ] = f(t, [v ; h])

yi = [v0; h0]

approximation

[uph] = g(t, [v ; h])

event!

up(-h)

Bouncing ball
model

h

F = m · a

−g = m · d2h(t)
dt2

d2h(t)
dt2 = −g/m

v̇ = −g/m v(0) = v0
ḣ = v h(0) = h0

Causal first-order ODEs

v(t) = v0 +
∫ t

0
(−g/m) .dτ

h(t) = h0 +
∫ t

0
v(τ) .dτ

Ideal solution

Solver[v̇ ; ḣ] = f(t, [v ; h])

yi = [v0; h0]

approximation

[uph] = g(t, [v ; h])

event!

up(-h)

Bouncing ball
model

h

F = m · a

−g = m · d2h(t)
dt2

d2h(t)
dt2 = −g/m

v̇ = −g/m v(0) = v0
ḣ = v h(0) = h0

Causal first-order ODEs

v(t) = v0 +
∫ t

0
(−g/m) .dτ

h(t) = h0 +
∫ t

0
v(τ) .dτ

Ideal solution

Solver[v̇ ; ḣ] = f(t, [v ; h])

yi = [v0; h0]

approximation

[uph] = g(t, [v ; h])

event!

up(-h)

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f f f

g

f

g

f

g

f

g

1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g gg

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f

f f

g

f

g

f

g

f

g

1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g gg

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f f

f

g

f

g

f

g

f

g

1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g gg

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f f f

g

f

g

f

g

f

g

1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g gg

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f f f

g

f

g

f

g

f

g

1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g gg

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f f f

g

f

g

f

g

f

g

1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g gg

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f f f

g

f

g

f

g

f

g

1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g gg

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f f f

g

f

g

f

g

f

g

1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g gg

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f f f

g

f

g

f

g

f

g

1. approximation error too large

f

f f

g

f

g

f

g

2. expression crosses zero

g gg

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f f f

g

f

g

f

g

f

g

1. approximation error too large

f f

f

g

f

g

f

g

2. expression crosses zero

g gg

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f f f

g

f

g

f

g

f

g

1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g gg

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f f f

g

f

g

f

g

f

g

1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g gg

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f f f

g

f

g

f

g

f

g

1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g gg

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f f f

g

f

g

f

g

f

g

1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g

gg

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f f f

g

f

g

f

g

f

g

1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g g

g

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f f f

g

f

g

f

g

f

g

1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g gg

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)

t

t

f f f

g

f

g

f

g

f

g

1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g gg

I Bigger and bigger steps (bound by hmin and hmax)
I t does not necessarily advance monotonically

I No side-effects within f or g

Bouncing ball
program

h

v̇ = −g/m v(0) = v0
ḣ = v h(0) = h0

reset v to −0.8 · v when h becomes 0

l e t hybrid b a l l () =
l e t
rec der v = (−. g / m) init v0

r e s e t (−. 0 . 8 ∗ . last v) every up(–. h)
and der h = v i n i t h0
i n (v , h)

Outline

Dataflow programming

Research objectives

Continuous modelling and simulation

Typing and compilation

Demonstration and conclusion

Which programs make sense?
Given:

l e t node sum(x) = cpt where
rec cpt = (0 . 0 fby cpt) +. x

Evaluate:
der time = 1 .0 i n i t 0 .0
and
y = sum(t ime)

every up(ez) init 0.0

Interpretation:
I Option 1: N ⊆ R
I Option 2: depends on solver
I Option 3: infinitesimal steps
I Option 4: type and reject

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

Which programs make sense?
Given:

l e t node sum(x) = cpt where
rec cpt = (0 . 0 fby cpt) +. x

Evaluate:
der time = 1 .0 i n i t 0 .0
and
y = sum(t ime)

every up(ez) init 0.0

Interpretation:
I Option 1: N ⊆ R
I Option 2: depends on solver
I Option 3: infinitesimal steps
I Option 4: type and reject

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

Which programs make sense?
Given:

l e t node sum(x) = cpt where
rec cpt = (0 . 0 fby cpt) +. x

Evaluate:
der time = 1 .0 i n i t 0 .0
and
y = sum(t ime)

every up(ez) init 0.0

Interpretation:
I Option 1: N ⊆ R
I Option 2: depends on solver
I Option 3: infinitesimal steps
I Option 4: type and reject

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

Which programs make sense?
Given:

l e t node sum(x) = cpt where
rec cpt = (0 . 0 fby cpt) +. x

Evaluate:
der time = 1 .0 i n i t 0 .0
and
y = sum(t ime)

every up(ez) init 0.0

Interpretation:
I Option 1: N ⊆ R
I Option 2: depends on solver
I Option 3: infinitesimal steps
I Option 4: type and reject

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

Which programs make sense?
Given:

l e t node sum(x) = cpt where
rec cpt = (0 . 0 fby cpt) +. x

Evaluate:
der time = 1 .0 i n i t 0 .0
and
y = sum(t ime)

every up(ez) init 0.0

Interpretation:
I Option 1: N ⊆ R
I Option 2: depends on solver
I Option 3: infinitesimal steps
I Option 4: type and reject

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

Which programs make sense?
Given:

l e t node sum(x) = cpt where
rec cpt = (0 . 0 fby cpt) +. x

Evaluate:
der time = 1 .0 i n i t 0 .0
and
y = sum(t ime)

every up(ez) init 0.0

Interpretation:
I Option 1: N ⊆ R
I Option 2: depends on solver
I Option 3: infinitesimal steps
I Option 4: type and reject

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

Which programs make sense?
Given:

l e t node sum(x) = cpt where
rec cpt = (0 . 0 fby cpt) +. x

Evaluate:
der time = 1 .0 i n i t 0 .0
and
y = sum(t ime)

every up(ez) init 0.0

Interpretation:
I Option 1: N ⊆ R
I Option 2: depends on solver
I Option 3: infinitesimal steps
I Option 4: type and reject

%

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

Which programs make sense?
Given:

l e t node sum(x) = cpt where
rec cpt = (0 . 0 fby cpt) +. x

Evaluate:
der time = 1 .0 i n i t 0 .0
and
y = sum(t ime) every up(ez) init 0.0

Interpretation:
I Option 1: N ⊆ R
I Option 2: depends on solver
I Option 3: infinitesimal steps
I Option 4: type and reject

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

ez

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

Which programs make sense?
Given:

l e t node sum(x) = cpt where
rec cpt = (0 . 0 fby cpt) +. x

Evaluate:
der time = 1 .0 i n i t 0 .0
and
y = sum(t ime) every up(ez) init 0.0

Interpretation:
I Option 1: N ⊆ R
I Option 2: depends on solver
I Option 3: infinitesimal steps
I Option 4: type and reject

0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

time

ez

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

Basic typing

The type language

bt ::= float | int | bool | zero
t ::= bt | t × t | β
σ ::= ∀β1, ..., βn.t

k−→ t
k ::= D | C | A A

D C

Initial conditions
(+) : int× int A−→ int
(=) : ∀β.β × β A−→ bool
if : ∀β.bool× β × β A−→ β

· fby · : ∀β.β × β D−→ β

up(·) : float C−→ zero

Compilation

h

l e t hybrid b a l l () =
l e t
rec der v = (−. g / m) init v0

r e s e t (−. 0 . 8 ∗ . last v) every up(–. h)
and der h = v i n i t h0
i n (v , h)

l e t node b a l l (z1 , (lh , lv) , ()) =
l e t rec i = t r u e fby f a l s e

and dv = (−. g / m)
and v = i f i then v0

e l s e i f z1 then −. 0 . 8 ∗ . lv
e l s e l v

and dh = v
and h = i f i then h0 e l s e lh

and upz1 = −. h

i n ((v , h) , upz1 , (h , v) , (dh , dv))

transform into discrete subsettransform continuous variablestransform zero-crossings
Careful mixing of discrete and continuous

I control discrete changes to respect invariant
I branching (i.e. automata) is tricky

Compilation

h

l e t hybrid b a l l () =
l e t
rec der v = (−. g / m) init v0

r e s e t (−. 0 . 8 ∗ . last v) every up(–. h)
and der h = v i n i t h0
i n (v , h)

l e t node b a l l (z1 , (lh , lv) , ()) =
l e t rec i = t r u e fby f a l s e

and dv = (−. g / m)
and v = i f i then v0

e l s e i f z1 then −. 0 . 8 ∗ . lv
e l s e l v

and dh = v
and h = i f i then h0 e l s e lh

and upz1 = −. h

i n ((v , h) , upz1 , (h , v) , (dh , dv))

transform into discrete subsettransform continuous variablestransform zero-crossings
Careful mixing of discrete and continuous

I control discrete changes to respect invariant
I branching (i.e. automata) is tricky

Compilation

h

l e t hybrid b a l l () =
l e t
rec der v = (−. g / m) init v0

r e s e t (−. 0 . 8 ∗ . last v) every up(–. h)
and der h = v i n i t h0
i n (v , h)

l e t node b a l l (z1 , (lh , lv) , ()) =
l e t rec i = t r u e fby f a l s e

and dv = (−. g / m)
and v = i f i then v0

e l s e i f z1 then −. 0 . 8 ∗ . lv
e l s e l v

and dh = v
and h = i f i then h0 e l s e lh

and upz1 = −. h

i n ((v , h) , upz1 , (h , v) , (dh , dv))

transform into discrete subset

transform continuous variablestransform zero-crossings
Careful mixing of discrete and continuous

I control discrete changes to respect invariant
I branching (i.e. automata) is tricky

Compilation

h

l e t hybrid b a l l () =
l e t
rec der v = (−. g / m) init v0

r e s e t (−. 0 . 8 ∗ . last v) every up(–. h)
and der h = v i n i t h0
i n (v , h)

l e t node b a l l (z1 , (lh , lv) , ()) =
l e t rec i = t r u e fby f a l s e

and dv = (−. g / m)
and v = i f i then v0

e l s e i f z1 then −. 0 . 8 ∗ . lv
e l s e l v

and dh = v
and h = i f i then h0 e l s e lh

and upz1 = −. h

i n ((v , h) , upz1 , (h , v) , (dh , dv))

transform into discrete subset

transform continuous variables

transform zero-crossings
Careful mixing of discrete and continuous

I control discrete changes to respect invariant
I branching (i.e. automata) is tricky

Compilation

h

l e t hybrid b a l l () =
l e t
rec der v = (−. g / m) init v0

r e s e t (−. 0 . 8 ∗ . last v) every up(–. h)
and der h = v i n i t h0
i n (v , h)

l e t node b a l l (z1 , (lh , lv) , ()) =
l e t rec i = t r u e fby f a l s e

and dv = (−. g / m)
and v = i f i then v0

e l s e i f z1 then −. 0 . 8 ∗ . lv
e l s e l v

and dh = v
and h = i f i then h0 e l s e lh

and upz1 = −. h

i n ((v , h) , upz1 , (h , v) , (dh , dv))

transform into discrete subsettransform continuous variables

transform zero-crossings

Careful mixing of discrete and continuous
I control discrete changes to respect invariant
I branching (i.e. automata) is tricky

Compilation

h

l e t hybrid b a l l () =
l e t
rec der v = (−. g / m) init v0

r e s e t (−. 0 . 8 ∗ . last v) every up(–. h)
and der h = v i n i t h0
i n (v , h)

l e t node b a l l (z1 , (lh , lv) , ()) =
l e t rec i = t r u e fby f a l s e

and dv = (−. g / m)
and v = i f i then v0

e l s e i f z1 then −. 0 . 8 ∗ . lv
e l s e l v

and dh = v
and h = i f i then h0 e l s e lh

and upz1 = −. h

i n ((v , h) , upz1 , (h , v) , (dh , dv))

transform into discrete subsettransform continuous variablestransform zero-crossings

Careful mixing of discrete and continuous
I control discrete changes to respect invariant
I branching (i.e. automata) is tricky

Source-to-source transformation

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

(dσ)

ODEs ?ODEsODEs

Data-flow + Auto. + ODE Data-flow + Auto.

Data-flow + ODE Data-flow Imperative code

Source-to-source transformation

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

(fσ , gσ , dσ)

ODEs ?

ODEsODEs

Data-flow + Auto. + ODE Data-flow + Auto.

Data-flow + ODE Data-flow Imperative code
codegen

ode

auto

ode

auto

Source-to-source transformation

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

(fσ , gσ , dσ)

ODEs ?

ODEs

ODEs

Data-flow + Auto. + ODE Data-flow + Auto.

Data-flow + ODE Data-flow Imperative code

ode

auto

ode

auto

codegen

I Pro: simpler definition of ODE
I Con: subtle invariant over intermediate language

Source-to-source transformation

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

(fσ , gσ , dσ)

ODEs ?ODEs

ODEs

Data-flow + Auto. + ODE Data-flow + Auto.

Data-flow + ODE Data-flow Imperative code

ode

auto

codegenode

auto

I Pro: intermediate result is well-typed
I Pro/Con: ODE code must include cases for automata

Outline

Dataflow programming

Research objectives

Continuous modelling and simulation

Typing and compilation

Demonstration and conclusion

Demonstrations

I Bouncing ball (standard)
I Bang-bang temperature controller (Simulink/Stateflow)
I Sticky Masses (Ptolemy)

Conclusion

Conclusion
I Synchronous languages should and can properly treat hybrid systems
I There are three good reasons for doing so:

1. To exploit existing compilers and techniques
2. For programming the discrete subcomponents
3. To clarify underlying principles and guide language design/semantics

I Our approach
I Hybrid dataflow language with hierarchical automata
I System of kinds for rejecting unreasonable programs
I Relate discrete to continuous via zero-crossings
I Compilation via source-to-source transformations
I Simulation using off-the-shelf numerical solvers

I Prototype compiler in OCaml using Sundials CVODE solver

Conclusion

Conclusion
I Synchronous languages should and can properly treat hybrid systems
I There are three good reasons for doing so:

1. To exploit existing compilers and techniques
2. For programming the discrete subcomponents
3. To clarify underlying principles and guide language design/semantics

I Our approach
I Hybrid dataflow language with hierarchical automata
I System of kinds for rejecting unreasonable programs
I Relate discrete to continuous via zero-crossings
I Compilation via source-to-source transformations
I Simulation using off-the-shelf numerical solvers

I Prototype compiler in OCaml using Sundials CVODE solver

Conclusion

Conclusion
I Synchronous languages should and can properly treat hybrid systems
I There are three good reasons for doing so:

1. To exploit existing compilers and techniques
2. For programming the discrete subcomponents
3. To clarify underlying principles and guide language design/semantics

I Our approach
I Hybrid dataflow language with hierarchical automata
I System of kinds for rejecting unreasonable programs
I Relate discrete to continuous via zero-crossings
I Compilation via source-to-source transformations
I Simulation using off-the-shelf numerical solvers

I Prototype compiler in OCaml using Sundials CVODE solver

Conclusion

Conclusion
I Synchronous languages should and can properly treat hybrid systems
I There are three good reasons for doing so:

1. To exploit existing compilers and techniques
2. For programming the discrete subcomponents
3. To clarify underlying principles and guide language design/semantics

I Our approach
I Hybrid dataflow language with hierarchical automata
I System of kinds for rejecting unreasonable programs
I Relate discrete to continuous via zero-crossings
I Compilation via source-to-source transformations
I Simulation using off-the-shelf numerical solvers

I Prototype compiler in OCaml using Sundials CVODE solver

	Dataflow programming
	Research objectives
	Continuous modelling and simulation
	Typing and compilation
	Demonstration and conclusion

