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Dataflow programming: core concepts

Programming with streams

constants 1 = 1 1 1 1 · · ·

operators x + y = x0 + y0 x1 + y1 x2 + y2 x3 + y3 · · ·

unit delay 0 fby (x + y) = 0 x0 + y0 x1 + x1 x2 + x2 · · ·

Programming with iterating machines Caspi and Pouzet. A Co-iterative Characterization of
Synchronous Stream Functions. 1998.
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l e t one ( ) = 1

l e t add x y = x + y

l e t de l a y ( ) = { i n i t = t r u e ; p re = n i l }

l e t de l a y_s t ep s e l f x y =
l e t r e s u l t =

i f s e l f . i n i t then x e l s e s e l f . p r e i n
s e l f . p r e <− y ;
s e l f . i n i t <− f a l s e ;
r e s u l t

l e t d e l a y_ r e s e t s e l f = s e l f . i n i t <− t r u e



Dataflow programming: composition and syntax
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let node iir_filter_2 x = y where

rec y = a ∗ x + (0.0 fby u)

and u = b ∗ x − d ∗ y + (0.0 fby v)

and v = c ∗ x − e ∗ y
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(Mixed) Dataflow programming: control structures
l e t node coun t e r ( f l i p , s top ) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop ( t r u e )
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop ( f a l s e )
done

| Stop (was_up )→
do

x = l x
u n t i l f l i p & was_up then Up

| t o g g l e then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. 2005.
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Dataflow programming languages
I Kahn Networks Kahn. The Semantics of a Simple Language for

Parallel Programming 1974.

I Lucid Wadge and Ashcroft. LUCID, the dataflow
programming language. 1985.

Asynchronous

I Lustre Caspi, Pilaud, Halbwachs, and Plaice. Lustre: A Declarative
Language for Programming Synchronous Systems. 1987.

I Clock calculus
I Deterministic, bounded memory, bounded execution time

I SCADE 6 http://www.esterel-technologies.com/products/scade-suite/

I Industrial (extended) version of Lustre
I Used in critical systems (DO-178B certified)
I Airbus flight control; Train braking; Nuclear safety

I Lucid Synchrone Caspi and Pouzet. A Functional Extension to Lustre. 1995.

I Higher-order dataflow
I Hierarchical automata
I Signals

Synchronous

I Ptolemy http://ptolemy.eecs.berkeley.edu/

I (subsets of) Simulink (and Stateflow) http://www.mathworks.com/products/simulink/
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So, what’s to do?

I We want a language for programming complex discrete systems
and modelling their physical environments

I (Also: embedded software that includes physical models)

I Something like Simulink/Stateflow, but
I Simpler and more consistent semantics and compilation
I Better understand interactions between discrete and continuous
I Simpler treatment of automata
I Certifiability for the discrete parts

Understand and improve the design of such modelling tools
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Approach

I Add Ordinary Differential Equations to an existing synchronous
language

I Two concrete reasons:
I Increase modelling power (hybrid programming)
I Exploit existing compiler (target for code generation)
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Bouncing ball
model

h

F = m · a

−g = m · d2h(t)
dt2

d2h(t)
dt2 = −g/m

v̇ = −g/m v(0) = v0
ḣ = v h(0) = h0

Causal first-order ODEs

v(t) = v0 +
∫ t

0
(−g/m) .dτ

h(t) = h0 +
∫ t

0
v(τ) .dτ

Ideal solution

Solver[v̇ ; ḣ] = f(t, [v ; h])

yi = [v0; h0]

approximation

[uph] = g(t, [v ; h])

event!

up(-h)
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Solver[v̇ ; ḣ] = f(t, [v ; h])

yi = [v0; h0]

approximation

[uph] = g(t, [v ; h])

event!

up(-h)



Bouncing ball
model

h

F = m · a

−g = m · d2h(t)
dt2

d2h(t)
dt2 = −g/m

v̇ = −g/m v(0) = v0
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ḣ = v h(0) = h0

Causal first-order ODEs

v(t) = v0 +
∫ t

0
(−g/m) .dτ

h(t) = h0 +
∫ t

0
v(τ) .dτ

Ideal solution

Solver[v̇ ; ḣ] = f(t, [v ; h])

yi = [v0; h0]

approximation

[uph] = g(t, [v ; h])

event!

up(-h)



Bouncing ball
model

h

F = m · a

−g = m · d2h(t)
dt2

d2h(t)
dt2 = −g/m

v̇ = −g/m v(0) = v0
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Solver execution
Give solver two functions: dy = fσ(t, y), upz = gσ(t, y)
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1. approximation error too large

f f f

g

f

g

f

g

2. expression crosses zero

g gg

I Bigger and bigger steps (bound by hmin and hmax )
I t does not necessarily advance monotonically

I No side-effects within f or g
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Bouncing ball
program

h

v̇ = −g/m v(0) = v0
ḣ = v h(0) = h0

reset v to −0.8 · v when h becomes 0

l e t hybrid b a l l ( ) =
l e t
rec der v = (−. g / m) init v0

r e s e t (−. 0 . 8 ∗ . last v) every up(–. h)
and der h = v i n i t h0
i n ( v , h )
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Which programs make sense?
Given:

l e t node sum( x ) = cpt where
rec cpt = (0 . 0 fby cpt ) +. x

Evaluate:
der time = 1 .0 i n i t 0 .0
and
y = sum( t ime )

every up(ez) init 0.0

Interpretation:
I Option 1: N ⊆ R
I Option 2: depends on solver
I Option 3: infinitesimal steps
I Option 4: type and reject
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time

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices
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Basic typing

The type language

bt ::= float | int | bool | zero
t ::= bt | t × t | β
σ ::= ∀β1, ..., βn.t

k−→ t
k ::= D | C | A A

D C

Initial conditions
(+) : int× int A−→ int
(=) : ∀β.β × β A−→ bool
if : ∀β.bool× β × β A−→ β

· fby · : ∀β.β × β D−→ β

up(·) : float C−→ zero



Compilation

h

l e t hybrid b a l l ( ) =
l e t
rec der v = (−. g / m) init v0

r e s e t (−. 0 . 8 ∗ . last v) every up(–. h)
and der h = v i n i t h0
i n ( v , h )

l e t node b a l l (z1 , ( lh , lv ) , ( ) ) =
l e t rec i = t r u e fby f a l s e

and dv = (−. g / m)
and v = i f i then v0

e l s e i f z1 then −. 0 . 8 ∗ . lv
e l s e l v

and dh = v
and h = i f i then h0 e l s e lh

and upz1 = −. h

i n ( ( v , h ) , upz1 , (h , v ) , ( dh , dv ) )

transform into discrete subsettransform continuous variablestransform zero-crossings
Careful mixing of discrete and continuous

I control discrete changes to respect invariant
I branching (i.e. automata) is tricky
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Source-to-source transformation

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

( dσ)

ODEs ?ODEsODEs

Data-flow + Auto. + ODE Data-flow + Auto.

Data-flow + ODE Data-flow Imperative code
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I Pro: simpler definition of ODE
I Con: subtle invariant over intermediate language



Source-to-source transformation

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

(fσ , gσ , dσ)

ODEs ?ODEs

ODEs

Data-flow + Auto. + ODE Data-flow + Auto.

Data-flow + ODE Data-flow Imperative code

ode

auto

codegenode

auto

I Pro: intermediate result is well-typed
I Pro/Con: ODE code must include cases for automata



Outline

Dataflow programming

Research objectives

Continuous modelling and simulation

Typing and compilation

Demonstration and conclusion



Demonstrations

I Bouncing ball (standard)
I Bang-bang temperature controller (Simulink/Stateflow)
I Sticky Masses (Ptolemy)



Conclusion

Conclusion
I Synchronous languages should and can properly treat hybrid systems
I There are three good reasons for doing so:

1. To exploit existing compilers and techniques
2. For programming the discrete subcomponents
3. To clarify underlying principles and guide language design/semantics

I Our approach
I Hybrid dataflow language with hierarchical automata
I System of kinds for rejecting unreasonable programs
I Relate discrete to continuous via zero-crossings
I Compilation via source-to-source transformations
I Simulation using off-the-shelf numerical solvers

I Prototype compiler in OCaml using Sundials CVODE solver
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