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Dataflow programming: core concepts

Programming with streams

constants 1 = 1 1 1 1
operators x +y =X+Yo x1ty1 xx+y» X3+y3
unit delay 0 fby (x +y) = 0 X+Yo Xx1+tx1 X+Xx

Caspi and Pouzet. A Co-iterative Characterization of
Synchronous Stream Functions. 1998

Programming with iterating machines
let one () =1 let delay () = { init = true; pre = nil }

let add x y = x + v let delay_step self x y =
let result =

if self.init then x else self.pre in
self.pre <— vy;
self.init <— false;
result

let delay_reset self = self.init <— true



Dataflow programming: composition and syntax

V=C*X —exy



Dataflow programming: composition and syntax

u=bxx—dxy+ (0.0 fby v)

and v =c*xXx —exy



Dataflow programming: composition and syntax

rec y =ax*x + (0.0 fby u)

and u =bxx —dx*y+ (0.0 fby v)

and v =cxXx —exy



Dataflow programming: composition and syntax

rec y =ax*x + (0.0 fby u)

and u =bxx —d=x*y+ (0.0 fby v)

and v =c*xXx —exy



Dataflow programming: composition and syntax

let node iir_filter_2 x =y where

rec y =a*x + (0.0 fby u)
and u=bxx—d=xy+ (0.0 fby v)

and v =c*xXx —exy



(Mixed) Dataflow programming: control structures
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let node counter (flip,
where

rec(Ix = 0 fby x

and automaton

| Up—
do
x = Ix + 1
until flip then
| stop then
done
| Down —
do
x = Ix —1
until flip then
| stop then
done

stop) = x

Down
Stop(true)

Up
Stop(false)
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(Mixed) Dataflow programming: control structures

—( Ix =0 fby x
flip

let node counter (flip,
where
rec Ix = 0 fby x
and automaton
| Up—
do

stop) = x

x = Ix +1
until flip then Down
| stop then Stop(true)
done

| Down —
do
x = Ix —1
until flip then Up
| stop then Stop(false)
done

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| toggle then Down
done
end

v

flip & was_up

Up O Down
x=1Ix+1 x=Ix —1
Q

stop(t) stop(f) 5
e %

x = Ix

(Parameterized) modes
contain definitions, incl. automata

until: weak preemption (test after)
unless: strong preemption (test before)
then: enter-with-reset

continue: entry-by-history
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So, what's to do?

» We want a language for programming complex discrete systems
and modelling their physical environments

> (Also: embedded software that includes physical models)

» Something like Simulink/Stateflow, but
» Simpler and more consistent semantics and compilation
» Better understand interactions between discrete and continuous
» Simpler treatment of automata
» Certifiability for the discrete parts

Understand and improve the design of such modelling tools
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Add Ordinary Differential Equations to an existing synchronous
language

» Two concrete reasons:

> Increase modelling power (hybrid programming)
» Exploit existing compiler (target for code generation)

Simulate with an external off-the-shelf numerical solver
(Sundlals CVODE Hindmarsh et al. SUNDIALS: Suite of nonlinear and )
1

differential /algebraic equation solvers. 2005

v

v

Conservative extension: synchronous functions are compiled,
optimized, and executed as per usual.
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Solver execution
Give solver two functions: dy = f,(t,y), upz = g,(t,y)

1. approximation error too large

fff f f f fff f

t

2. expression crosses zero

» Bigger and bigger steps (bound by hmin and hpmax)
» t does not necessarily advance monotonically

> No side-effects within f or g
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and der h = v init hO
in (v, h)
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Which programs make sense?

Given:
let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x
Evaluate:

der time = 1.0 init 0.0
and
y = sum(time) every up(ez) init 0.0
Interpretation:
» Option1: NCR
» Option 2: depends on solver
» Option 3: infinitesimal steps

» Option 4: type and reject

10

time

ez




Which programs make sense?

Given:
let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x
Evaluate:

der time = 1.0 init 0.0
and
y = sum(time) every up(ez) init 0.0
Interpretation:
» Option1: NCR
» Option 2: depends on solver
» Option 3: infinitesimal steps

» Option 4: type and reject

Explicitly relate simulation and logical time (using zero-crossings)

10

time

ez

Try to minimize the effects of solver parameters and choices



Basic typing

The type language

bt = float |int |bool |zero D

t o= bt|txt|p \ /
k

o = VBi,....0nt —t

k == D|C|A A

Initial conditions

(+) : int xint —» int
(=) VBB x B 5 bool
if : VB.bool x B x 3 SN I}

fby- 1 VBB X B -8
up(-) : float —» zero



Compilation

® let hybrid ball () =
let
rec der v = (—. g / m) init v0
reset (—. 0.8 x. lastv) every up(-— h)
h and der h = v init hO
in (v, h)




Compilation

. let hybrid ball () =
let
rec der v = (—. g / m) init v0
reset (—. 0.8 x. lastv) every up(-. h)
h and der h = v init hO
in (v, h)

let node ball (z1, (lh, Iv), ()) =
let rec i = true fby false

and dv = (—. g / m)

and v = if i then vO
else if z1 then —. 0.8 =*. Iv
else |v

and dh = v

and h = if i then hO else |h

and upzl = —. h

in ((v, h), upzl, (h, v), (dh, dv))



Compilation

® let hybrid ball () =
let
rec/der v = (—. g / m) init v0
reset (—. 0.8 x. lastv) every up(-— h)

h and der h = v init hO
in \(v, h)
Pr——— let node b.aII (z1, (Ih, Iv), ()) =
let rec i = true fby false

and dv = (—. g / m)

and v = if i then vO
else if z1 then —. 0.8 =*. Iv
else |v
transform into discrete subset
and dh = v
and h = if i then hO else |h
and upzl = —. h

in ((v, h), upzl, (h, v), (dh, dv))



Compilation

® let hybrid ball () =

let

rec der, v =(—. g / m) init vO

reset (—. 0.8 x. lastv) every up(-. h)

h v init ho
— (z1, (th ), () =
true fby false
. g/ m)
and v = if i then vO
else if z1 then —. 0.8 =*. Iv
else |v
transform continuous variables
and dh = v
and h = if i then hO else |h
and upzl = —. h

in ((v, h), upzl, (h, v), (dh, dv))



Compilation

let hybrid ball () =

let
rec der v = (—. g / m) init v0
reset (—. x. last v) every up(-. h)
and der h = v inj¥ h0O
in (v, h)

let node ball (z1, (lh, Iv), ())
let rec i = true fby false

and dv = (—. g / m)
and v = if i then v
else if zl1 then
else |v




Compilation

® let hybrid ball () =

let

rec der v = (—. init v0

. lastv) every up(-. h)

h and der h

in (v, h)
i — let node b. =
let rec i =
and dv = (—.
and v = if i
else if z1 then —. 0.8 =*. Iv
else |v

and dh Careful mixing of discrete and continuous
and h
» control discrete changes to respect invariant

and upz  » branching (i.e. automata) is tricky

in ((v, h), upzl, (h, v), (dh, dv))



Source-to-source transformation

lexing/
parsing

A\

typing/
caus./init.

Y

automata

—>

scheduling

Y

code gen.

(dﬂ')




Source-to-source transformation

ODEs ?

Iexm.g/ & typ|ng./. »| automata — -+ —| scheduling »| code gen.
parsing caus./init.
(fo, 8o dor)
ode
Data-flow + Auto. + ODE ———— > Data-flow + Auto.
auto auto
ode codegen

Data-flow + ODE > Data-flow ——————— Imperative code




Source-to-source transformation

ODEs
Iexm.g/ & typ|ng./. »| automata -+ ——| scheduling »| code gen.
parsing caus./init.
(fo, 8o dor)
ode
Data-flow + Auto. + ODE ——— Data-flow + Auto.
auto auto
ode codegen
Data-flow + ODE > Data-flow ———— Imperative code

» Pro: simpler definition of ODE

» Con: subtle invariant over intermediate language



Source-to-source transformation

ODEs

Iexm.g/ & typ|ng./. ‘(= automata — .- —| scheduling »| code gen.
parsing caus./init.
(fo, 8o dor)

ode

Data-flow + Auto. + ODE ——— > Data-flow + Auto.

auto auto
ode codegen
Data-flow + ODE » Data-flow —————— Imperative code

» Pro: intermediate result is well-typed

» Pro/Con: ODE code must include cases for automata



Outline

Dataflow programming

Research objectives

Continuous modelling and simulation

Typing and compilation

Demonstration and conclusion



Demonstrations

» Bouncing ball (standard)
» Bang-bang temperature controller (Simulink/Stateflow)
» Sticky Masses (Ptolemy)



Conclusion

Conclusion

» Synchronous languages should and can properly treat hybrid systems
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1. To exploit existing compilers and techniques

2. For programming the discrete subcomponents

3. To clarify underlying principles and guide language design/semantics
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Conclusion

» Synchronous languages should and can properly treat hybrid systems
» There are three good reasons for doing so:

1. To exploit existing compilers and techniques

2. For programming the discrete subcomponents

3. To clarify underlying principles and guide language design/semantics
» Our approach
Hybrid dataflow language with hierarchical automata
System of kinds for rejecting unreasonable programs
Relate discrete to continuous via zero-crossings

Compilation via source-to-source transformations
Simulation using off-the-shelf numerical solvers
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Conclusion

Conclusion

» Synchronous languages should and can properly treat hybrid systems
» There are three good reasons for doing so:

1. To exploit existing compilers and techniques

2. For programming the discrete subcomponents

3. To clarify underlying principles and guide language design/semantics
» Our approach
Hybrid dataflow language with hierarchical automata
System of kinds for rejecting unreasonable programs
Relate discrete to continuous via zero-crossings

Compilation via source-to-source transformations
Simulation using off-the-shelf numerical solvers

vy vV v VvYYy

» Prototype compiler in OCaml using Sundials CVODE solver
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