
Back to Basics: Achieving High Performance
Garbage Collectors by Improving Reference Counting

Rifat Shahriyar
Australian National University

rifat.shahriyar@anu.edu.au

Reference counting is one of the fundamental approaches to garbage collection. It is important but overlooked and not
studied extensively compared to the tracing collectors. In fact we find out that the state of the art reference counting is
totally outperformed by the simplest tracing collector mark-sweep (28% slower in total-time and 68% slower in collection-
time). That is why, despite having some interesting characteristics reference counting is not widely used compared to the
tracing collectors. It has been observed that some garbage collectors are in fact some form of hybrid of tracing and
reference counting. So reference counting has definite impact on other garbage collectors. We try to understand reference
counting comprehensively and find out its major design points - a) storing the reference count, b) processing increment
and decrement of the reference count, and c) collecting cyclic objects. We study its intrinsic properties on real benchmarks
and also perform a detail quantitative analysis.

Reference counting needs space to store the reference count for each object. Usually one extra word is used in the object
header to store the count. But in our analysis we find out that most of the objects (95% or more) reference count is between
1 to 10. Typical object header contains few unused bits. So we can store the count in those unused bits instead of using the
extra word. In that case some objects count cannot be stored in the limited bits and separate strategies will be required to
handle those objects. We proposed different strategies for limited bit reference counting and thoroughly evaluated them.
The best strategy can improve total-time by 4% and collection-time by 12% on average compare to the state of the art
reference counting over the 19 benchmarks we used from DaCapo and SPEC suites.

The processing of increment and decrement of the reference count are performed using two separate queues, mod-buffer
(for increments) and dec-buffer (for decrements). The state of the art reference counting is a deferred reference counting
and uses coalescing write barrier where a series of increments and decrements are coalesced into one. A newly allocated
object is initialized with a count of one, an entry to the dec-buffer and eagerly pushed to the mod-buffer. In our analysis
we found out that majority of the increments and decrements are performed because of the newly allocated objects that
are eagerly pushed to the mod-buffer. So we proposed a strategy where the new allocated objects are initially overlooked
and pushed into the mod-buffer lazily and no increment and decrement are performed for those newly allocated objects
those did not survive a single collection. So we are able to reduce huge amount of unnecessary processing for those objects
whose increment and decrement will eventually cancel each other out and the object become garbage. This idea is guided
by the result of the analysis we performed. This novel strategy can improve total-time by 21% and collection-time by 63%
on average compare to state of the art reference counting.

By combining two above-mentioned ideas we can achieve improvement of total-time by 23% and collection-time by
67% over the state of the art reference counting. If we compare with mark sweep then it is only 7% slower in total-time
and 5% slower in collection-time. We are able to speed up reference counting whose performance is now competitive to
the tracing collectors. We believe by making reference counting competitive to tracing, performance of a large class of
garbage collectors can be improved.


