
Generics via Lisp-Like Primitives

go fold-free

Matt Roberts



Datatype Generic is Nice



Explicit Spine View is Nicer

this is not the right 
everywhere - it needs an 
f at the front of the 
recursive call



x

Spine view (tuples of atoms)

Cons 1 Nil
@@

@@

Cons 1

Nil

y



But this does not exist

All data is a tuple of 
atoms (spine view)

Data application



Types!

:: a

:: β:: β → a

The βs must be the same, but there is no 
link between them



Compiled version

:: a

:: β:: β → a

The βs must be the same, we link them at 
the ispair



Γ

∃β.

Type algorithm
:: a

:: β

:: β → a

d

kar d

kdr d

the triple, ispair, kar and kdr are acting like a single 
function (a fold) for the type system.

every 

kar,kd
r 

witnesse
d by 

an isp
air



Generic Equality

:: a :: a

:: β → a

:: β :: γ → a

:: γ

∃α
∃γ

Existentially quantified variables have to be treated 
as constants - they can only unify with themselves.

β and γ must the same but 
that information is lost

This slide is incorrect and should be 
ignored.



ΓType algorithm
:: a

:: (a,_)

:: (_,a)

d1

kar d1

kdr d2

the triple, ispair, kar and kdr are acting like a single 
function (a fold) for the type system.

We have saved the 
information we previously 

lost

:: a

:: (a,_)

:: (_,a)

d2

kar d2

kdr d2

d1 d2

This slide is incorrect and should be 
ignored.



Opens up a whole world

We don’t have time to cover more here, but you 
will find all these details and more in my upcoming 

dissertation

You can play with dgen at 
http://dgen.science.mq.edu.au:8080

warning! you 
need to learn a 

new syntax


