
Synthesis of Software Kernels in
Hardware

Vitalik Nikolyenko
The University of Sydney

November 19, 2010

Software development

Software development approaches:

I hardware-to-software
I developing for a particular fixed architecture
I dominating approach in software construction

I software-to-hardware
I designing an architecture for a specific task
I targets application requirements
I achieves substantial benefits over the traditional

approach
I possible with reconfigurable computing

Reconfigurable computing

I refers to some form of hardware programmability
I many technologies that allow for hardware

programmability
I e.g., PLAs, MPGAs, FPGAs, etc
I FPGAs are the most common underlying technology

I FPGAs are programmable logic devices:

Reconfigurable computing (cont.)

I reconfigurable systems are often coupled with a processor
I processor controls the reconfigurable logic
I executes portions of applications that cannot be

accelerated efficiently
I performs hardware/software partitioning
I scheduling

I fills the gap between hardware and software
I software flexibility
I hardware performance

I fixed data path
I no instructions (controlled by registers)

Example

[Lysecky et al., 2006]

Example

Bit-level operations:

[Lysecky et al., 2006]

Target architecture

Underlying dataflow architecture:

I limited control flow
I e.g., loops

I shared interconnect
I island-style, network-on-chip

routing

I local register-file

Register transfer instructions are
required!

PE

PE

PE PE

CE CE

PE

Hardware-software partitioning
Syntax

I limited C/C++ syntax

I explicit kernel definition

I special data-types

1: void exec_path(register_bank &rb)
2: {
3: // set the size of the
4: // register bank
5: rb.set_size(1);
6:
7: // fill the register bank
8: // with some values
9: ddg_float a(1.6);
10: rb.store(0,a);
11: }
12:
13: void kernel(register_bank &rb)
14: {
15: ddg_float a = rb.load_float(0);
16: ddg_float b = ddg_float(5.6);
17: ddg_int c = a + b;
18: ddg_float d = c * b;
19: ddg_float e = a + b;
20: ddg_float f = a / e;
21:
22: for(int i=0;i<5;i++) {
23: a = a * f;
24: }
25: rb.store(0,a);
26: }

Hardware-software partitioning
Data-dependency graph

void kernel(register_bank &rb)

{

ddg_float a = rb.load_float(0);

ddg_float b = ddg_float(5.6);

ddg_int c = a + b;

ddg_float d = c * b;

ddg_float e = a + b;

ddg_float f = a / e;

for(int i=0;i<5;i++) {

a = a * f;

}

rb.store(0,a);

}

Hardware synthesis flow
Synthesising kernels in hardware

DDG

Scheduler

Source
code

Scheduling
+

X-links Opt

HW
Synthesis

Verilog
FPGA

Synthesis

X-links

Bitstream Program

void exec_path(register_bank &rb) {
 ...
}
void kernel(register_bank &rb) {
 ...
}

Scheduling

Scheduling:

I assigns operations to processors

I ensures that data dependencies between operations are
enforced

I minimises the total execution time (makespan)

I NP-hard for multiprocessor systems
[Garey and Johnson, 1990]

List scheduling approach:

I heuristic to order tasks in a list and then greedily
distribute them among processors

I 2-approximation

Scheduling
Example

Register allocation
Example

Register allocation

Optimal register allocation in linear
time:

I graph coloring
I introducing communication

instructions into the DDG
I constructing and partitioning

the interval graph
I using Lex-BFS search to find

a perfect ordering
I applying greedy coloring

P1

P2

P2

Figure: data dependencies

Register allocation

Optimal register allocation in linear
time:

I graph coloring
I introducing communication

instructions into the DDG
I constructing and partitioning

the interval graph
I using Lex-BFS search to find

a perfect ordering
I applying greedy coloring

P1

P2

P2

P2

Figure: data dependencies

Cross-links

Register transfer instructions (communication instructions):

I require opening of new cross-links (communication links
between PEs)

I expensive
I logic required (transistors)
I makespan

I add extra complexity to the scheduling problem

Optimisation question

A multi-objective function of producing an optimal schedule:

I minimising the makespan

I reducing the number of cross-links

I can be described using the concept of Pareto optimality
[Boyd and Vandenberghe, 2004]

Optimisation trade-offs

makespan

cross-links

Plan

I construct a mathematical formulation considering the
constraints

I use Integer Linear Programming (ILP) to find an optimal
solution

I not practical for large problem sizes
I a good yardstick to compare how good available

heuristics perform

Summary

New prototype system presented for the automatic
hardware/software partitioning

I easy to use

I provides significant performance (*hopefully)

I 2-approximation scheduling algorithm

I optimal register allocation in liner time

Boyd, S. and Vandenberghe, L. (2004).
Convex Optimization.

Garey, M. R. and Johnson, D. S. (1990).
Computers and Intractability; A Guide to the Theory of
NP-Completeness.

Lysecky, R., Stitt, G., and Vahid, F. (2006).
Warp processors.

