
Lightweight Domain-Specific Language Processing in Kiama, Anthony Sloane, GTTSE 2009 Tutorial

Anthony M. Sloane

Programming Languages Research Group
Department of Computing, Macquarie University
Sydney, Australia

Anthony.Sloane@mq.edu.au
http://www.comp.mq.edu.au/~asloane
http://plrg.science.mq.edu.au

Lightweight Language Processing in Kiama

Supported by The Netherlands NWO projects 638.001.610, MoDSE: Model-Driven
Software Evolution, 612.063.512, TFA: Transformations for Abstractions, and 040.11.001,
Combining Attribute Grammars and Term Rewriting for Programming Abstractions.

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

The Kiama Library

An experiment in embedding language processing paradigms in the
Scala programming language.

Currently includes:

packrat parsing combinators (soon to be removed)

strategy-based term rewriting

dynamically-scheduled attribute grammars

Project web site:

http://kiama.googlecode.com

2

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Scala Programming Language

Odersky et al, Programming Methods Laboratory, EPFL, Switzerland

Main characteristics:

object-oriented at core with functional features

statically typed, local type inference

scalable: scripting to large system development

runs on JVM, interoperable with Java

3

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Stratego

A powerful term rewriting language based on

primitive match, build, sequence and choice operators

rewrite rules built on the primitives

generic traversal operators to control application rules

an implementation by translation to C

Deployed for many program transformation problems including DSL
implementation, compiler optimisation, refactoring and web
application development.

http://strategoxt.org
4

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Strategy

A transformation of a term that either

succeeds producing a new term, or

fails

 abstract class Strategy extends (Term => Option[Term])

 abstract class Option[A]
 case class Some[A] (val a : A) extends Option[A]
 case object None extends Option[Nothing]

5

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Abstract Syntax

 type Idn = String

 abstract class Exp

 case class Num (value : Int) extends Exp
 case class Var (name : Idn) extends Exp
 case class Lam (name : Idn, tipe : Type, body : Exp)
 extends Exp
 case class App (l : Exp, r : Exp) extends Exp
 case class Opn (op : Op, left : Exp, right : Exp)
 extends Exp
 case class Let (name : Idn, tipe : Type, exp : Exp,
 body : Exp) extends Exp

6

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Term Examples

 // 1 + 3

 val a = Opn(AddOp,Num(1),Num(3))

 // \x : Int . x + y

 val b = Lam("x",IntType,Opn(AddOp,Var("x"),Var("y")))

 // (\x : Int -> Int . x 5) 7

 val c = App(Lam("x",FunType(IntType,IntType),
 App(Var("x"),Num(5))),
 Num(7))

7

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Applying Strategies

A strategy is just a function, so it can be applied directly to a term.

 val s : Strategy
 val t : Term
 s (t)

rewrite can be used to ignore failure.

 def rewrite (s : => Strategy) (t : Term) : Term

 rewrite (s) (t)

8

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Basic Strategies

Always succeed with no change. val id : Strategy
 Always fail. val failure : Strategy

 Succeed if the current term is equal to t.

 def term (t : Term) : Strategy

 Always succeed, changing the term to t.

 implicit def termToStrategy (t : Term) : Strategy

9

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Rewrite Rules

Rewrite rules are defined by Scala partial functions.

 def rule (f : PartialFunction[Term,Term]) : Strategy

 A rewrite rule to evaluate arithmetic operations using Scala's case
 syntax for partial functions.

 val arithop =
 rule {
 case Opn (op, Num (l), Num (r)) =>
 Num (op.eval (l, r))
 }

10

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Combining Strategies

Methods on the Strategy class allow strategies to be combined.

 p <* q sequence

 p <+ q deterministic choice

 p + q non-deterministic choice

 p < q + r guarded choice

Scala has a flexible naming convention for methods and allows the
period to be omitted in a call.

 p <+ q <* r is just (p.<+(q)).<*(r)

11

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Library Strategies (1)

 def attempt (s : => Strategy) : Strategy =
 s <+ id

 def not (s : => Strategy) : Strategy =
 s < failure + id

 def repeat (s : => Strategy) : Strategy =
 attempt (s <* repeat (s))

12

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Library Strategies (2)

 def topdown (s : => Strategy) : Strategy =
 s <* all (topdown (s))

 def oncetd (s : => Strategy) : Strategy =
 s <+ one (oncetd (s))

 def reduce (s : => Strategy) : Strategy = {
 def x : Strategy = some (x) + s
 repeat (x)
 }

13

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Lambda Calculus with Meta-level Substitution

 def eval (exp : Exp) : Exp =
 rewrite (evals) (exp)

 val evals = reduce (beta + arithop)

 val beta =
 rule {
 	 case App (Lam (x, _, e1), e2) =>
 substitute (x, e2, e1)
 	 }

 def substitute (x : Idn, e2: Exp, e1 : Exp) : Exp

14

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Lambda Calculus with Explicit Substitution

 val evals = reduce (lambda_es)

 val lambda_es =
 beta + arithop + subsNum + subsVar + subsApp +
 subsLam + subsOpn

 val beta =
 rule {
 case App (Lam (x, t, e1), e2) =>
 Let (x, t, e2, e1)
 }

15

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Explicit Substitution (1)

 val subsNum =
 rule {
 case Let (_, _, _, e : Num) => e
 }

 val subsVar =
 rule {
 case Let (x, _, e, Var (y)) if x == y => e
 case Let (_, _, _, v : Var) => v
 }

16

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Explicit Substitution (2)

 val subsApp =
 rule {
 case Let (x, t, e, App (e1, e2)) =>
 App (Let (x, t, e, e1), Let (x, t, e, e2))
 }

 val subsOpn =
 rule {
 case Let (x, t, e1, Opn (op, e2, e3)) =>
 Opn (op, Let (x, t, e1, e2),
 Let (x, t, e1, e3))
 }

17

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Explicit Substitution (3)

 val subsLam =
 rule {
 case Let (x, t1, e1, Lam (y, t2, e2))
 if x == y =>
 Lam (y, t2, e2)
 case Let (x, t1, e1, Lam (y, t2, e2)) =>
 val z = freshvar ()
 Lam (z, t2,
 Let (x, t1, e1,
 Let (y, t2, Var (z), e2)))
 }

18

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Attribute Grammars

Attributes are properties of tree nodes.

Attribute equations are associated with context-free grammar
productions to describe how attribute values are related to other
attribute values.

A declarative formalism from which evaluation strategies can be
automatically determined.

Static attribute scheduling: determine at generation time a tree
traversal strategy that will enable all attributes to be evaluated in an
appropriate order.

Dynamic attribute scheduling: evaluate only those attributes that are
needed to compute a property of interest.

19

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Attribute Grammars in Kiama

Joint work with Lennart Kats and Eelco Visser (TU Delft)

Attribute

partial function from tree node to attribute value
maintains an attribute-local cache

Attribute value notation

sugar for a function call
node->a is the same as a (node)

Augmented tree structure is visible to attributes via node properties
including parent and next, prev, isFirst, isLast for nodes in sequences

20

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Variable Liveness

21

In Out
y = v; {v, w} {v, w, y}
z = y; {v, w, y} {v, w}
x = v; {v, w} {v, w, x}
while (x) {v, w, x} {v, w, x}
{

 x = w; {v, w} {v, w}
 x = v; {v, w} {v, w, x}
}

return x; {x}

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Liveness : tree structure

 case class Program (body : Stm) extends Attributable

 abstract class Stm extends Attributable

 case class Assign (left : Var, right : Var)
 extends Stm
 case class While (cond : Var, body : Stm) extends Stm
 case class If (cond : Var, tru : Stm, fls : Stm)
 extends Stm
 case class Block (stms : Stm*) extends Stm
 case class Return (ret : Var) extends Stm
 case class Empty () extends Stm

 type Var = String
22

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Liveness : control flow graph

23

y = v;

z = y;

x = v;

while (x)

{

 x = w;

 x = v;

}

return x;

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Liveness : successors

 val succ : Stm ==> Set[Stm] =
 attr {
 case If (_, s1, s2) => Set (s1, s2)
 case t @ While (_, s) => t->following + s
 case Return (_) => Set ()
 case Block (s, _*) => Set (s)
 case s => s->following
 }

24

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Liveness : following statements

 val following : Stm ==> Set[Stm] =
 childAttr {
 case s => {
 case t @ While (_, _) =>
 Set (t)
 case b @ Block (_*) if s isLast =>
 b->following
 case Block (_*) =>
 Set (s.next)
 case _ =>
 Set ()
 }
 }

25

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Liveness : variable uses and definitions

 val uses : Stm ==> Set[Var] =
 attr {
 case If (v, _, _) => Set (v)
 case While (v, _) => Set (v)
 case Assign (_, v) => Set (v)
 case Return (v) => Set (v)
 case _ => Set ()
 }

 val defines : Stm ==> Set[Var] =
 attr {
 case Assign (v, _) => Set (v)
 case _ => Set ()
 }

26

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Liveness : in and out dataflow equations

27

in(s) = uses(s) ∪ (out(s) \ defines(s))

out(s) =
�

x∈succ(s) in(x)

 val in : Stm ==> Set[Var] =
 circular (Set[Var]()) {
 case s => uses (s) ++ (out (s) -- defines (s))
 }

 val out : Stm ==> Set[Var] =
 circular (Set[Var]()) {
 case s => (s->succ) flatMap (in)
 }

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Liveness : in and out dataflow equations

28

in(s) = uses(s) ∪ (out(s) \ defines(s))

out(s) =
�

x∈succ(s) in(x)

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Summary

So far, so good...

Rewriting is around 1000 lines of code, attribution around 600 lines,
including comments and a largish strategy library.

Scala has proven to be a powerful and convenient basis for this work.

Ongoing activities:

Types for strategies, attribute compositions
Support for more language processing paradigms
Larger use cases, performance and scalability
Expressibility and semantics of paradigm combinations
Correctness of semantics of paradigm hosting and combinations

29

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Questions?

For downloads, documentation, papers, talks and mailing lists see

http://kiama.googlecode.com

30

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Extras

31

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Rewriting Rules

(\ x : t . e1) e2 => let x : t = e2 in e1

32

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Rewriting Rules

(\ x : t . e1) e2 => let x : t = e2 in e1

33

 val beta =
 rule {
 	 case App (Lam (x, t, e1), e2) =>
 Let (x, t, e2, e1)
 	 }

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Part 2. Rewriting

Application area: program transformation

desugaring of high-level language constructs

evaluation by reduction rules

optimisation

source to target translation

Suited for modifying the structure of the program, in contrast to
attribution which usually decorates a fixed structure and is more
suited to program analysis.

34

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Part 1. Language Processing Paradigms

Formalisms and associated implementation techniques for analysing,
translating and executing structured text.

context-free grammars
attribute grammars
term rewriting systems

Typically realised by specific notations and tools that embody the
implementation techniques.

parser generators: YACC, JavaCC, SDF, ANTLR, Rats!, etc
attribute grammar systems: JastAdd, Eli/LIGA, Lrc, UU-AG, etc
term rewriting systems: Stratego, ASF+SDF, TXL,TOM, etc

35

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Tutorial Outline

1. Kiama: motivation, aims and approach

2. Strategy-based rewriting

• evaluation schemes for lambda calculus

3. Dynamically-scheduled attribute grammars

• live variable analysis for imperative languages

36

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Embedding Paradigms

Specialised notations and tools are powerful but imply overhead to

learn paradigms and notations
install tools and integrate with development processes
enable multiple tools and notations to cooperate

Bring language processing paradigms closer to software developers
via libraries

use only constructs from a "general purpose" language
what do you give up?

precision of notation? correctness guarantees? efficiency?

37

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Abstract Syntax (2)

 abstract class Type

 case object IntType extends Type
 case class FunType (arg : Type, res : Type)
 extends Type

 abstract class Op {
 def eval (l : Int, r : Int) : Int
 }
 case object AddOp extends Op { ... }
 case object SubOp extends Op { ... }

38

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Lifting Functions to Strategies

Scala functions can be converted to strategies.

 def strategyf (f : Term => Option[Term]) : Strategy

 val failure : Strategy =
 strategyf (_ => None)

 val id : Strategy =
 strategyf (t => Some (t))

39

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Queries

A query is run for its side-effects.

 def query[T] (f : PartialFunction[Term,T]) : Strategy

 A query to collect variable references.

 var vars = Set[String]()
 val varrefs = query { case Var (s) => vars += s }

 (Nothing is said here about term traversal. More on that later.)

40

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Generic Traversal

All of the strategies seen so far apply only to the current term.

The all combinator applied to a strategy s, constructs a strategy that
applies s to all of the children of the current term and assembles the
rewritten children under the original constructor, provided that all of
the rewrites succeed.

 def all (s : => Strategy) : Strategy

Similarly for some children or one child.

 def some (s : => Strategy) : Strategy
 def one (s : => Strategy) : Strategy

 Implemented via a simple form of reflection on Scala Product types.
41

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Name Scoping

Stratego version of strategy to look for a specific subterm:

 issubterm =
 ?(x,y); where (<oncetd(?x)> y)

Kiama version:

 val issubterm : Strategy =
 strategy {
 case (x : Term, y : Term) =>
 where (oncetd (term (x))) (y)
 }

42

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Lambda Calculus with Lazy Evaluation

 val traverse : Strategy =
 rule {
 case App (e1, e2) =>
 App (eval (e1), e2)
 case Let (x, t, e1, e2) =>
 Let (x, t, e1, eval (e2))
 case Opn (op, e1, e2) =>
 Opn (op, eval (e1), eval (e2))
 }

43

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Summary

So far, so good...

Rewriting is around 1000 lines of code, including comments, library.

Scala has proven to be a powerful and convenient basis for this work.

Open issues:

Support for more language processing paradigms in this style

Larger use cases, performance and scalability

Expressibility and semantics of paradigm combinations

Correctness of semantics of paradigm hosting and combinations

44

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Further Reading

Kiama http://kiama.googlecode.com, lambda2 example

Stratego http://strategoxt.org

Domain-Specific Language Engineering. Visser, GTTSE 2007
Program Transformation with Stratego/XT. Visser, DSPG 2004
Building Interpreters with Rewriting Strategies. Dolstra and Visser,
LDTA 2002

Scala http://www.scala-lang.org

Programming in Scala, Odersky. Spoon and Venners, Artima, 2008

45

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Lambda Calculus with Eager Evaluation

 val evals : Strategy =
 attempt (traverse) <* attempt (lambda_es <* evals)

 val traverse : Strategy =
 rule {
 case App (e1, e2) =>
 App (eval (e1), eval (e2))
 case Let (x, t, e1, e2) =>
 Let (x, t, eval (e1), eval (e2))
 case Opn (op, e1, e2) =>
 Opn (op, eval (e1), eval (e2))
 }

46

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

A classic example: Repmin

47

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

A classic example: Repmin

48

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Repmin : tree structure

abstract class Tree extends Attributable

case class Pair (left : Tree, right : Tree)
 extends Tree
case class Leaf (value : Int)
 extends Tree

val t = Pair (Leaf (3), Pair (Leaf (1), Leaf (10)))

49

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Repmin : local and global minima

 val locmin : Tree ==> Int =
 attr {
 case Pair (l, r) => (l->locmin) min (r->locmin)
 case Leaf (v) => v
 }

 val globmin : Tree ==> Int =
 attr {
 case t if t isRoot => t->locmin
 case t => t.parent[Tree]->globmin
 }

50

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Repmin : result tree

 val repmin : Tree ==> Tree =
 attr {
 case Pair (l, r) => Pair (l->repmin, r->repmin)
 case t : Leaf => Leaf (t->globmin)
 }

51

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Semantic analysis

Attribute grammars are often used for analysis tasks where attributes
represent semantic properties of program constructs.

Example: name and type analysis in simply-typed lambda calculus

all uses of names should be associated with their binding
occurrence

a use without a binding occurrence is an error

all expressions should have a type

expressions must be used in a way that is consistent with their
type

52

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Abstract Syntax (1)

 type Idn = String

 abstract class Exp

 case class Num (value : Int) extends Exp
 case class Var (name : Idn) extends Exp
 case class Lam (name : Idn, tipe : Type, body : Exp)
 extends Exp
 case class App (l : Exp, r : Exp) extends Exp
 case class Opn (op : Op, left : Exp, right : Exp)
 extends Exp

53

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Abstract Syntax (2)

 abstract class Type

 case object IntType extends Type
 case class FunType (arg : Type, res : Type)
 extends Type

 abstract class Op {
 def eval (l : Int, r : Int) : Int
 }
 case object AddOp extends Op { ... }
 case object SubOp extends Op { ... }

54

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Method 1: Bound variable environment

55

(\x : Int . (\y : Int -> Int . y x))

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Method 1: Bound variable environment

 val env : Exp ==> List[(String,Type)] =
 childAttr {
 case _ => {
 case null => List ()
 case p @ Lam (x, t, _) => (x,t) :: p->env
 case p : Exp => p->env

 }
 }

56

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Method 1: Defining the type of an expression (1)

 val tipe : Exp ==> Type =
 attr {
 case Num (_) => IntType

 case Lam (_, t, e) => FunType (t, e->tipe)

 case Opn (op, e1, e2) =>
 if (e1->tipe != IntType)
 message (e1, "expected Int, found " +

 (e1->tipe))
 if (e2->tipe != IntType)
 message (e2, "expected Int, found " +
 (e2->tipe))
 IntType

57

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Method 1: Defining the type of an expression (2)

 case App (e1, e2) =>
 e1->tipe match {
 case FunType (t1, t2) if t1 == e2->tipe =>
 t2
 case FunType (t1, t2) =>
 message (e2, "expected " + t1 +
 ", found " + (e2->tipe))
 IntType
 case _ =>
 message (e1, "non-function")
 IntType
 }

58

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Method 1: Defining the type of an expression (3)

 case e @ Var (x) =>

 (e->env).find { case (y,_) => x == y } match {

 case Some ((_, t)) => t

 case None =>
 message (e, "'" + x + "' unknown")
 IntType

 }

 }
59

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Method 2: Reference to binding node

60

(\x : Int . (\y : Int -> Int . y x))

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Method 2: Reference to binding node

 case e @ Var (x) =>

 (e->lookup (x)) match {

 case Some (Lam (_, t, _)) => t

 case None =>
 message (e, "'" + x + "' unknown")
 IntType

 }

61

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Method 2: Name lookup

 def lookup (name : Idn) : Exp ==> Option[Lam] =

 attr {

 case e @ Lam (x, t, _) if x == name =>
 Some (e)

 case e if e isRoot =>
 None

 case e =>
 e.parent[Exp]->lookup (name)

 }
62

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Summary

So far, so good...

Attribution is around 600 lines of code, including comments.

Scala has proven to be a powerful and convenient basis for this work.

Open issues:

Support for more language processing paradigms in this style

Larger use cases, performance and scalability

Expressibility and semantics of paradigm combinations

Correctness of semantics of paradigm hosting and combinations

63

Lightweight Language Processing in Kiama, Anthony Sloane, SAPLING 2009

Further Reading

Kiama http://kiama.googlecode.com

repmin, lambda2, dataflow examples

A Pure Object-Oriented Embedding of Attribute Grammars,
Sloane, Kats, Visser, LDTA 2009

Scala http://www.scala-lang.org

Programming in Scala, Odersky. Spoon and Venners, Artima, 2008

64

