
J O H N P O T T E R
Y I L U

C O M P U T E R S C I E N C E & E N G I N E E R I N G
U N I V E R S I T Y O F N E W S O U T H W A L E S , S Y D N E Y

Ownership Types
After Ten Years

Outline

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

2

  The problem
  Flexible Alias Protection

  Implicit structure in object graphs
  Ins and Outs of Objects

  Imposing object structure in programs
  Ownership Types

  Variations on the ownership theme
  Ownership and accessibility
  Ownership effect systems
  Object validity

  Oval

The Problem

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

3

  Aliasing is endemic in OO programming
  Objects have identity + mutable state
  Knowing the object ID gives access to the object state

 Either directly or indirectly

  Mutable state + sharing creates problems
  To understand program behaviour:

 An object’s invariants may depend on other aliased objects
 Need to understand the topology of the object graph
 Loses modularity in program reasoning

  When objects are updated, their clients may need to adapt
 But there may be no local knowledge of this object dependency
 Object notification is difficult

Ownership Prehistory: The Geneva Convention
on the Treatment of Object Aliasing

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

4

  Formulated by 5 researchers at ECOOP’91
 John Hogg, Bell-Northern Research &

Doug Lea, SUNY Oswego &
Alan Wills, University of Manchester &
Dennis deChampeaux, Hewlett-Packard &
Richard Holt, University of Toronto

  Will port1 transferTo: port2 amount: $100.00 really
decrease the amount of money in port1
  Two ways to fail:

 port1 == port2 which is easy to check for (a direct alias)
 Or the two portfolios share the internal account involved in the

transfer which is not easy to check for (an indirect alias)

Ownership Prehistory: The Geneva Convention
on the Treatment of Object Aliasing

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

5

  Categorised 4 approaches to aliasing:
  Detection.

 Static or dynamic (run-time) diagnosis of potential or actual
aliasing.

  Advertisement.
 Annotations that help modularize detection by declaring aliasing

properties of methods.
  Prevention.

 Constructs that disallow aliasing in a statically checkable fashion.

  Control.
 Methods that isolate the effects of aliasing.

Ownership Prehistory:
Full Encapsulation: Islands and Balloons

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

6

  Islands (Hogg 91) and Balloons (Almeida 97) provide
alias protection

  Full encapsulation => objects inside an island/balloon
  Cannot be referenced from outside
  Cannot refer to other objects outside

  Internal aliasing is OK
  Tends to be overly restrictive

  A container cannot share its elements with another container
  To allow ease of use of encapsulated objects, both approaches allow

dynamic aliases (via local variables)
  Enforcement of full encapsulation

  Islands used annotations with run-time checks
  Balloons advocated a complex static analysis

 Unusable in practice

Ownership Conception: Flexible Alias Protection

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

7

  Noble, Vitek, Potter: ECOOP’98

  Language level access modifiers are too weak
  An object referenced via a private field may be returned via a

public method
 Gave rise to security hole in Java 1 applet security model

  Access modifiers do not control aliasing

  Full encapsulation techniques are too strong

  Flexible alias protection aims to allow benign forms
of aliasing

Ownership Conception: Flexible Alias Protection

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

8

  Aliasing modes for object references
  Rep

 For internal representation
 Allows internal aliasing but no export

  Arg (with Role)
 For “arguments” or shareable elements of a container
 Only access immutable interface of referenced objects

  Free
 For new unbound objects

  Val
  Immutable objects

  Var (with Role)
 The escape hatch …

Ownership Conception: Flexible Alias Protection

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

9

class Course<arg s Student> {
 private rep Hashtable<arg s Student, rep RawMark>
 marks = new Hashtable();

 public void enrol (arg s Student s) {
 rep RawMark r = new RawMark();
 marks.put(s, r);
 }

 public void recordMarkFor(arg s Student s,
 val String workUnit,
 val int mark) {
 marks.get(s).recordMarkFor(workUnit, mark);
 }

 public void finalReport (arg s Student s) {
 marks.get(s).finalReport();
 }

}

Ownership Conception: Flexible Alias Protection

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

10

  No formal model developed
  Implementation attempted (by Dave Clarke) in Pizza

  Martin Odersky’s experiment with generics in Java
  Provided a vehicle with type parametric classes
  Pizza type checking code hard to modify
  Unspecified type rules to implement!

  Inspirations from FLAP
  Need to be able to partition object graphs somehow
  Need to develop a formal type system
  Issues with various code idioms and design patterns
  Potential applications such as memory management and

concurrency control

Prenatal Ownership:
Implicit Structure in Object Graphs

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

11

  The Ins and Outs of Objects
  J. Potter, J. Noble, and D. Clarke.

  In Australian Software Engineering Conference (ASWEC), 1998
 Most Valuable Paper awarded in 2008

  Partitioning of object graph
  Lattice structure for sets of separating objects
  James told John it’s too complex
  Attempt to focus on simplest separators led to rediscovery of

graph dominator concept
  If I’d known more about compilers I would have known about

dominators!

An Object Graph
12

  an application object r
  list header objects a, b

  a and b are doubly linked
lists

  they share data content
 data objects c1, c2, c3, c4

  their link objects are not
shared
  link objects a1, a2, a3, a4

  link objects b1, b2, b3, b4 •  list b is the reverse
of list a

The Ins and Outs of Objects
13

  all reference paths to an object from a root object
may share
  in graph theory, these are called articulation points, or

dominators

  the dominators form a tree structure
  our idea: the dominator tree (often) captures the

intended object encapsulation structure

Object Dominator Tree
14

  the blocks in the diagram
are associated with an
owner object

  the blocks contain the
objects dominated by the
owner
  e.g. a1 is dominated by a
  c1 is not dominated by a

  there is an alternative path
from r to c1 via b

Ownership Invariant
15

  the object reference structure induces the
dominator (or ownership) tree

  think of the objects dominated by an owner as
being inside the owner

  object references can only cross ownership
boundaries from the inside to the outside

  the ownership invariant: given objects x, y
if x refers to y
then owner(y) dominates x

Ownership Monitoring
16

  track dominator tree for all objects on the heap at
run-time

  ownership will need to be updated if the ownership
invariant is violated
  this can only happen with object field assignment

  in practice for Java, the stack plays the role of a
root object, and we further exploit the stack
structure to yield a stack of dominator trees
  dominator update is a challenging algorithm

  version 1: hacked the source code of a JVM
  version 2: instrumented bytecode

Object Visualisation
17

  Idea: display object graph at run-time
  problem: how to do graph layout?
  solution: use a tree structure
  problem: what tree?

  Creation tree: creator as parent
  advantage: creator is fixed
  problem: objects often out-live their creators

  Ownership tree: owner as parent
  advantage: relatively stable, owners out-live their objects,

references do not cross into encapsulations
  problem: ownership needs to be updated dynamically

Object Visualisation
18

  OTOG was first attempt: same example as above

Figure 5. OTOG Graph Layout

Object Visualisation
19

  Dino was greatly improved second attempt
  Moral: student slaves produce better work than paid lackeys

  Trent Hill, 4th year project at Macquarie

Figure 7. Arma-Dino Ownership Tree

More Than One Thread
20

Figure 10. DINO Layout

Displaying Class Names
21

Figure 13. Example Visualisation (cont’d)

Collapsing Tree Nodes
22

Figure 14. Collapsed Nodes

Alternative Views
23

Figure 15. Verbose, Brief and Compressed Modes

Views of Ownership
24

Figure 16. Normal, Set and Cell Views

The Birth of Ownership Types

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

25

  Dynamic monitoring extracts intended object
encapsulation

  Why not allow programmers to document their
intentions?
  Then perhaps a compiler could check for unintended breaches

of encapsulation

  First publication on ownership types
  Clarke, Potter and Noble

 Ownership Types for Flexible Alias Protection
 OOPSLA 1998
 Awarded Most Valuable Paper in 2008

Ownership Types
26

  Every class has an owner parameter
  when a new object of the class is created, the owner must be

specified
  either using an existing owner, or as this
  all existing owners are accessed via type parameters

  Objects owned by this are internal objects
  their type cannot be accessed by any other external object
  inability to name this is how we statically enforce the

ownership invariant
  now called the owners-as-dominators model

  The owner is part of the type of an object
  dynamically, ownership forms a tree which is extended with each

new object creation
  ownership types are a simple kind of dynamic type
  syntactically, this can work nicely with generic types

Example for Ownership Types
27

class Stack<X> {

 this::Link<X> head;

 void add(X x) {
 temp = head;
 head = new this::Link<X>;
 head.next = temp;
 head.element = x;
 }

 X get() {
 return head.element;
 }

}

class Link<X> {
 owner::Link<X> next;
 X element;

}

Warning on Syntax
28

  If you read our papers, you will find the syntax
much heavier than this
  We use explicit ownership parameters, and do not marry

with generic types
  This syntax allows us to focus on the key theoretical

points
  Alex Potanin’s Ownership Generic Java

  Blends ownership type parameters with
  Requires minimal change to Java 5+ type checker
  Uses sensible defaults

  objects with unspecified owner are in the top level ownership
context (i.e. the root level)

  such objects are not encapsulated and can be accessed from
anywhere

Dave Clarke

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

29

  PhD thesis
  Object Ownership and Containment
  completed at UNSW in 2001 (Dave’s now at Leuven)

  Formal model
  Presented in Cardelli’s Object Calculus

  Recognised distinction between
  rep defining reference capability for an object
  owner defining accessibility

  In Dave’s model this may be an ancestor of rep rather than just a parent

  Extends owners-as-dominators
  X can reference Y X.rep is inside Y.owner

  Many other issues and extensions addressed informally in his
thesis
  Required reading for anyone working in ownership related areas

Related Work on Ownership
30

 Boyapati: uses ownership for separating between
per thread objects, and shared objects
  synchronisation control only needed on shared objects

 Other related models:
  Boskowski and Vitek: confined types
  Aldrich and Chambers: ownership domains and ArchJava
  Muller: Universes
  Clarke and Wrigstad: external uniqueness
  Boyapati and Liskov: uses inner classes to provide limited

form of exposure e.g. for iterators

Ownership and Accessibility

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

31

  Lu and Potter
  On Ownership and Accessibility
  ECOOP 2006

  Similar to Dave Clarke’s separation of capability and
accessibility
  But Clarke’s model specifies both capability and accessibility as part

of object type
  Lu and Potter define accessibility for reference types, rather than for

object types
  And provide a Java-like notation instead of the Object Calculus
  New expressions ignore accessibility (object creation)
  Type declarations require accessibility (use of a reference)

Ownership and Accessibility: Example

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

32

  class List<o, d> { Node<this, d> head; … }

 The client can reference both list and its elements

list

node

data

client

Ownership and Accessibility: Example

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

33

  class List<o, d> { Node<this, d> head; … }

 The client can NOT reference the node objects
owned by the list – it cannot name this inside the
list object

list

node

data

client

Ownership and Accessibility: Example

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

34

  class List<o, d> { Node<this, d> head; … }

  A problem: where should we put an iterator?

list

data

client

I

Ownership and Accessibility: Example

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

35

  class List<o, d> { Node<this, d> head; … }

  A problem: where should we put an iterator?

list

data

client

I

Ownership and Accessibility

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

36

  The challenges and forces:

  Iterators must reference the list’s representation (nodes)
  Iterators must be used by the client
  Iterators must NOT expose nodes to the client

  Reference type:
  [access] C<capability list>
  access is a single owner context

 Determines the object’s accessibility
  accessibility invariant:

  If x→y then x ≤ y.access

  Allows much more flexible reference structures

A list example with iterator

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

37

class List<o, d> {
 [this] Node<this, d> head;
 [o] Iterator<this, d> getIter() { return new [o]Iterator<this, d>(head); } }

class Iterator<o, d> {
 [o] Node<o, d> current;
 [d] Data element() { return current.data; } }

// client code
List<this, world> list = new List<this, world>();
[this] Iterator<*, world> iter = list.getIter(); // OK
… = iter.current // ERROR, type is [?] Node<?, d>
iter.element().useMe(); // OK, type is [world] Data

38

A list example with iterator

class List<o, d> {
 [this] Node<this, d> head;
 [o] Iterator<this, d> getIter() { return new [o]Iterator<this, d>(head); } }

class Iterator<o, d> {
 [o] Node<o, d> current;
 [d] Data element() { return current.data; } }

// client code
List<this, world> list = new List<this, world>();
[this] Iterator<*, world> iter = list.getIter(); // OK
… = iter.current // ERROR, type is [?] Node<?, d>
iter.element().useMe(); // OK, type is [world] Data

client

list

world

39

A list example with iterator

class List<o, d> {
 [this] Node<this, d> head;
 [o] Iterator<this, d> getIter() { return new [o]Iterator<this, d>(head); } }

class Iterator<o, d> {
 [o] Node<o, d> current;
 [d] Data element() { return current.data; } }

// client code
List<this, world> list = new List<this, world>();
[this] Iterator<*, world> iter = list.getIter(); // OK
… = iter.current // ERROR, type is [?] Node<?, d>
iter.element().useMe(); // OK, type is [world] Data

client

list

world

40

A list example with iterator

class List<o, d> {
 [this] Node<this, d> head;
 [o] Iterator<this, d> getIter() { return new [o]Iterator<this, d>(head); } }

class Iterator<o, d> {
 [o] Node<o, d> current;
 [d] Data element() { return current.data; } }

// client code
List<this, world> list = new List<this, world>();
[this] Iterator<*, world> iter = list.getIter(); // OK
… = iter.current // ERROR, type is [?] Node<?, d>
iter.element().useMe(); // OK, type is [world] Data

client

list

world

41

A list example with iterator

class List<o, d> {
 [this] Node<this, d> head;
 [o] Iterator<this, d> getIter() { return new [o]Iterator<this, d>(head); } }

class Iterator<o, d> {
 [o] Node<o, d> current;
 [d] Data element() { return current.data; } }

// client code
List<this, world> list = new List<this, world>();
[this] Iterator<*, world> iter = list.getIter(); // OK
… = iter.current // ERROR, type is [?] Node<?, d>
iter.element().useMe(); // OK, type is [world] Data

client

list

world

Ownership Effect Systems

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

42

  Greenhouse and Boyland
  An object-oriented effects system ECOOP 1999
  Later work on fractional permissions by Boyland

  Clarke and Drossopolou
  Ownership, encapsulation and disjointness of type and effect. OOPSLA 2002
  “JOE”

  N. Cameron, S. Drossopoulou, J. Noble, and M. Smith
  Multiple Ownership OOPSLA 2007
  “MOJO”

  Read-only and immutability
  Muller and various others 99+

  Universes
  Birka and Ernst 02

  Javari

Ownership and Object Validity

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

43

  Lu and Potter
  Effective Ownership POPL 2007

  Lu, Potter and Xue
  Validity invariants and effects ECOOP 2007
  “Oval”
  Key ideas:

 Ownership confined dependency
 Validity contracts for methods

  Specifies what objects are valid before and after
•  The Validity Invariant

  and what may be invalidated
•  The Validity Effect

Ownership-confined Dependency

  An object’s invariant can
only depend on its state
and states of its owned
objects.

  Dependency is reflexive
and transitive

  If x is valid, then all
objects x depends on
must be valid too

top

y

x

Ownership-confined Dependency

top

y

x

  An object’s invariant can
only depend on its state
and states of its owned
objects.

  Dependency is reflexive
and transitive

  If x is updated, then all
objects depending on x
become invalid

Ownership-confined Dependency

top

y

x

  If x is updated, then all
objects depending on x
become invalid

  If x was originally valid
before update, then all
objects owned by x are
still valid

Validity Contract in Oval <I, E>

top

I

  m(…) <I, E> { … }

  I is the top of the sub-
tree

  It abstracts the validity
invariant sub-tree

Validity Contract in Oval <I, E>

  m(…) <I, E> { … }

  E is the bottom of the
branch from top

  It abstracts the validity
effect branch

top

E

Validity Contract in Oval <I, E>

  If I < E

  No overlap between
validity invariant and
effect

  No validation is required

top

I

E

Validity Contract in Oval <I, E>

  If I = E

  The only overlap is the
local object
  I = E = this

  Validation is required for
the local object this

top

I, E

Our Current Work

SAPLING Talk, 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

51

  Extending the Oval model
  Pre and postconditions for validity contracts
  Yields a flow sensitive type system
  Introduce an explicit validity assumption statement to cover

lack of reasoning about actual program states
  System reasons with 2 states per object: valid and invalid
  More subtle than it looks!

  Ownership-based effects and interference
  Synchronisation requirements inference
  Automatic lock generation and allocation

In Retrospect

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

52

  Ownership types have gained a lot of attention
  Even though no real popular uptake in PLs

  Annotation burden
  Overly restrictive type rules

  Experimental language features should not be rushed into
production

  We continue to learn more about how ownership concepts
can be usefully deployed

  Need to combine ownership concepts with other related
ideas
  Separation logic
  Regions

Key Ideas for Ownership

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

53

  Object ownership is determined at creation time
  Just like object identity, but is programmer specified
  Imposing object structure is a sensible thing to do

  Parametric ownership types gives reasonable flexibility
  Need to integrate with parametric types better than OGJ
  Need expressive constraint language for assumptions on type/ownership

parameters
  Want good choice of defaults and good inference algorithms to minimise

annotation burden
  Different type rules can be used to achieve different kinds of

ownership policies
  Separation of object capability and reference accessibility
  Need to be able to parametrise the type system for different policies for different

types of objects
  Ownership based effect systems offer the promise of more precise reasoning

about effects than other kinds of systems

SAPLING Talk 2/10/2009 John POTTER, Yi LU Ownership Types After Ten Years

54

