
ACCELERATING MATRIX LANGUAGES
WITH THE

CELL BROADBAND ENGINE

Raymes Khoury
The University of Sydney

2

MATLAB and Octave

  MATLAB
 High level, interpreted, un-typed language
 Very popular among scientists and engineers
  Simple sequential semantics for expressing

algorithms with matrix operations
  Slow for large problem sizes

  Octave
  Freely available alternative to MATLAB
  Part of the GNU project
 Mimics syntax and semantics of MATLAB
  Libraries of Octave differ to MATLAB libraries

2

3

Modern Parallel Architectures

  The limits of performance of traditional
single-core processors are reached.

  Fundamental shift towards parallel
architectures

  Current popular parallel architectures:
 Cell Processor (Sony, Toshiba and IBM)
 Multi-core CPUs (Intel Core2 Series)
 General Purpose GPUs (Nvidia Tesla)

  Significant boost of performance
 15 GFLOPs of a single core vs. 2 TFLOPs

3

4

The Cell Broadband Architecture

  Parallel microprocessor architecture
  Developed by Sony, Toshiba and IBM between 2000

and 2005

  Used in the IBM Roadrunner – the worlds fastest
supercomputer (Top500, > 1 PETAFLOP)

4

5

The Cell Broadband Architecture
5

6

Research Questions

  How do we parallelise a matrix language program
for modern parallel architectures?

6

7

Parallelising Matrix Languages

  A) Translate code by hand
 Concurrent programming is hard
 Not trained in concurrent programming
  Expensive/Time consuming

  B) Automatically parallelise code
 Our research

7

8

Parallel MATLAB

  2003 survey found 27 Parallel MATLAB projects
  Limitations

 Targeted toward distributed parallel architectures
 Varying degrees of intervention by the

programmer required
 Naive approach

 Only data parallelism of matrix operations exploited

8

9

PS3: Parallel Octave on the Cell

  Our extension for the Octave interpreter
 Minimal changes to existing Octave code for programmer

  PS3 exploits various parallelism in Octave programs:
  Data parallelism: splitting matrices
  Instruction level parallelism: execute independent matrix

operations in parallel
  Pipeline parallelism: Communication overlaps with

computation
  Task parallelism: concurrent execution of octave programs

and matrix operations

9

10

Design

10

11

Octave Extension

  Introduced a custom data type called ps3_matrix

  To utilise our system convert matrices to ps3_matrix
matrices

11

x = rand(100);

y = rand(100);

a = x + y;

b = x .* y;

c = a + b;

disp(c);

x = ps3_matrix(rand(100));

y = ps3_matrix(rand(100));

a = x + y;

b = x .* y;

c = a + b;

disp(c);

Original code Parallel code

12

Octave Extension

  Lazy evaluation used to collect traces of operations
whose result is not needed

  Data dependence graph of these operations
constructed

12

x = ps3_matrix(rand(100));

y = ps3_matrix(rand(100));

a = x + y;

b = x .* y;

c = a + b;

disp(c);

x y

a b

c

Source code Data Dependence Graph

13

Lowering

  Lowering is triggered by
evaluating a trace, e.g.,
disp(c)

  Matrices are split into sub-
matrices

  Parallel computations of sub-
matrices on SPUs

  SPEs have 256KB local store
  Splitting matrices is a

necessity!

13

Lowered Data Dependence Graph

x y

a b

c

Data Dependence Graph

x1 x2 x3 x4 y1 y2 y3 y4

a1 a2 a3 a4 b1 b2 b3 b4

c1 c2 c3 c4

14

Bubble

Scheduler

  Lowered operations are
scheduled among the
available processors

  Want to schedule in a way
that
 Satisfies data dependencies

between operations
 Minimises the makespan of

execution

14

Schedule

Lowered Data Dependence Graph

P1 P2 P3

a1 a2

a4
b1 b2

b4

c1
c2 c4

c3

M
ak

es
pa

n

x1 x2 x3 x4 y1 y2 y3 y4

a1 a2 a3 a4 b1 b2 b3 b4

c1 c2 c3 c4

X ILLEGAL

a3

b3

15

Scheduler

  The scheduling problem is NP-Hard
  Finding an optimal solution takes too long to do at

runtime

  Designed a heuristic
  Worst-case runtime complexity O(nlogn+m)
  Earliest instruction is scheduled in first available stream

  Designed an Integer Linear Program formulation
  Gives optimal solution
  Validate the precision of the heuristic

15

16

Computation Engine

  Computation engine takes schedule and executes it on
available processors

  We implement a computation engine for the Cell
Processor

  Matrix Execution Units
  Each SPE runs a small virtual machine

 for matrix operations

  Features used for performance:
 Double/Triple buffering
  SIMD operations

16

17

Benchmarks

  9 benchmark kernels chosen
 Octave programs that involve many matrix operations

  Include:
 Computing Markov Chains
 Computing the Discrete Fourier Transform of a signal
  K-means clustering
 Neural network training

  Compared runtime of our system on a Cell processor
with Intel Core2Quad processor
 Q9950, 2.83 GHz

17

18

Results: Speedup vs. Intel Core2 Quad
18

19

Conclusion

  New system presented for the automatic
parallelisation of Octave code on the Cell Processor
  Exploits several types of parallelism
  Lazy evaluation to expose instruction level parallelism
 Schedule operations on processors for maximal utilisation

of parallel units

  Results show significant speedups over Octave on
more recent and more expensive Intel processors

19

20

Related Work

1.  Sutter, H.
The free lunch is over: A fundamental turn toward concurrency in software
Dr. Dobb’s Journal, 2005, 30, 202-210

2.  Choy, R. & Edelman, A.
Parallel MATLAB: Doing it Right
Proceedings of the IEEE, 2005, 93, 331-341

3.  Fisher, J.
Trace scheduling: A technique for global microcode compaction
IEEE Transactions on Computers, 1981, 100, 478-490

4.  Kwok, Y.-K. & Ahmad, I.
Static scheduling algorithms for allocating directed task graphs to multiprocessors
ACM Comput. Surv., ACM, 1999, 31, 406-471

5.  Chen, T.; Raghavan, R.; Dale, J. N. & Iwata, E.
Cell broadband engine architecture and its first implementation: a performance
view
IBM J. Res. Dev., IBM Corp., 2007, 51, 559-572

20

21

Lowered Multiplication

  b = x * y

21

x00 x01
x10 x11

y00 y01
y10 y11

 1 2 3 4
 5 6 7 8
 9 10 11 12
13 14 15 16

 1 2 3 4
 5 6 7 8
 9 10 11 12
13 14 15 16

x =

x = b00 b01
b10 b11

b00 = x00y00 + x01y10

22

Lowered Multiplication

  b = x * y

22

x x x x y y y y

b b b b b b b b

b b b b

23

Efficiency
23

1 2 3 4 5 6
Processors

1

2

3

4

5

6

7

Sp
ee
du
p

leontief
hits
dft
kmeans
hill

24

Idle time
24

dft dma hill hits kmeans leontief markov neura
0

10
20
30
40
50
60
70
80
90

100

Id
le

 ti
m

e
(%

)

task
dma

25

Speedups vs Octave BLAS
25

214

dft dma hill hits kmeans leontief markov neura

1

3

5

7

9

Sp
ee
du
p

26

Scheduling
26

27

Breakdown
27

cleanup (2.74%)

execution (75.59%)

allocation (0.83%)

scheduling (11.40%)

lowering (9.44%)

