
ACCELERATING MATRIX LANGUAGES
WITH THE

CELL BROADBAND ENGINE

Raymes Khoury
The University of Sydney

2

MATLAB and Octave

  MATLAB
 High level, interpreted, un-typed language
 Very popular among scientists and engineers
  Simple sequential semantics for expressing

algorithms with matrix operations
  Slow for large problem sizes

  Octave
  Freely available alternative to MATLAB
  Part of the GNU project
 Mimics syntax and semantics of MATLAB
  Libraries of Octave differ to MATLAB libraries

2

3

Modern Parallel Architectures

  The limits of performance of traditional
single-core processors are reached.

  Fundamental shift towards parallel
architectures

  Current popular parallel architectures:
 Cell Processor (Sony, Toshiba and IBM)
 Multi-core CPUs (Intel Core2 Series)
 General Purpose GPUs (Nvidia Tesla)

  Significant boost of performance
 15 GFLOPs of a single core vs. 2 TFLOPs

3

4

The Cell Broadband Architecture

  Parallel microprocessor architecture
  Developed by Sony, Toshiba and IBM between 2000

and 2005

  Used in the IBM Roadrunner – the worlds fastest
supercomputer (Top500, > 1 PETAFLOP)

4

5

The Cell Broadband Architecture
5

6

Research Questions

  How do we parallelise a matrix language program
for modern parallel architectures?

6

7

Parallelising Matrix Languages

  A) Translate code by hand
 Concurrent programming is hard
 Not trained in concurrent programming
  Expensive/Time consuming

  B) Automatically parallelise code
 Our research

7

8

Parallel MATLAB

  2003 survey found 27 Parallel MATLAB projects
  Limitations

 Targeted toward distributed parallel architectures
 Varying degrees of intervention by the

programmer required
 Naive approach

 Only data parallelism of matrix operations exploited

8

9

PS3: Parallel Octave on the Cell

  Our extension for the Octave interpreter
 Minimal changes to existing Octave code for programmer

  PS3 exploits various parallelism in Octave programs:
  Data parallelism: splitting matrices
  Instruction level parallelism: execute independent matrix

operations in parallel
  Pipeline parallelism: Communication overlaps with

computation
  Task parallelism: concurrent execution of octave programs

and matrix operations

9

10

Design

10

11

Octave Extension

  Introduced a custom data type called ps3_matrix

  To utilise our system convert matrices to ps3_matrix
matrices

11

x = rand(100);

y = rand(100);

a = x + y;

b = x .* y;

c = a + b;

disp(c);

x = ps3_matrix(rand(100));

y = ps3_matrix(rand(100));

a = x + y;

b = x .* y;

c = a + b;

disp(c);

Original code Parallel code

12

Octave Extension

  Lazy evaluation used to collect traces of operations
whose result is not needed

  Data dependence graph of these operations
constructed

12

x = ps3_matrix(rand(100));

y = ps3_matrix(rand(100));

a = x + y;

b = x .* y;

c = a + b;

disp(c);

x y

a b

c

Source code Data Dependence Graph

13

Lowering

  Lowering is triggered by
evaluating a trace, e.g.,
disp(c)

  Matrices are split into sub-
matrices

  Parallel computations of sub-
matrices on SPUs

  SPEs have 256KB local store
  Splitting matrices is a

necessity!

13

Lowered Data Dependence Graph

x y

a b

c

Data Dependence Graph

x1 x2 x3 x4 y1 y2 y3 y4

a1 a2 a3 a4 b1 b2 b3 b4

c1 c2 c3 c4

14

Bubble

Scheduler

  Lowered operations are
scheduled among the
available processors

  Want to schedule in a way
that
 Satisfies data dependencies

between operations
 Minimises the makespan of

execution

14

Schedule

Lowered Data Dependence Graph

P1 P2 P3

a1 a2

a4
b1 b2

b4

c1
c2 c4

c3

M
ak

es
pa

n

x1 x2 x3 x4 y1 y2 y3 y4

a1 a2 a3 a4 b1 b2 b3 b4

c1 c2 c3 c4

X ILLEGAL

a3

b3

15

Scheduler

  The scheduling problem is NP-Hard
  Finding an optimal solution takes too long to do at

runtime

  Designed a heuristic
  Worst-case runtime complexity O(nlogn+m)
  Earliest instruction is scheduled in first available stream

  Designed an Integer Linear Program formulation
  Gives optimal solution
  Validate the precision of the heuristic

15

16

Computation Engine

  Computation engine takes schedule and executes it on
available processors

  We implement a computation engine for the Cell
Processor

  Matrix Execution Units
  Each SPE runs a small virtual machine

 for matrix operations

  Features used for performance:
 Double/Triple buffering
  SIMD operations

16

17

Benchmarks

  9 benchmark kernels chosen
 Octave programs that involve many matrix operations

  Include:
 Computing Markov Chains
 Computing the Discrete Fourier Transform of a signal
  K-means clustering
 Neural network training

  Compared runtime of our system on a Cell processor
with Intel Core2Quad processor
 Q9950, 2.83 GHz

17

18

Results: Speedup vs. Intel Core2 Quad
18

19

Conclusion

  New system presented for the automatic
parallelisation of Octave code on the Cell Processor
  Exploits several types of parallelism
  Lazy evaluation to expose instruction level parallelism
 Schedule operations on processors for maximal utilisation

of parallel units

  Results show significant speedups over Octave on
more recent and more expensive Intel processors

19

20

Related Work

1.  Sutter, H.
The free lunch is over: A fundamental turn toward concurrency in software
Dr. Dobb’s Journal, 2005, 30, 202-210

2.  Choy, R. & Edelman, A.
Parallel MATLAB: Doing it Right
Proceedings of the IEEE, 2005, 93, 331-341

3.  Fisher, J.
Trace scheduling: A technique for global microcode compaction
IEEE Transactions on Computers, 1981, 100, 478-490

4.  Kwok, Y.-K. & Ahmad, I.
Static scheduling algorithms for allocating directed task graphs to multiprocessors
ACM Comput. Surv., ACM, 1999, 31, 406-471

5.  Chen, T.; Raghavan, R.; Dale, J. N. & Iwata, E.
Cell broadband engine architecture and its first implementation: a performance
view
IBM J. Res. Dev., IBM Corp., 2007, 51, 559-572

20

21

Lowered Multiplication

  b = x * y

21

x00 x01
x10 x11

y00 y01
y10 y11

 1 2 3 4
 5 6 7 8
 9 10 11 12
13 14 15 16

 1 2 3 4
 5 6 7 8
 9 10 11 12
13 14 15 16

x =

x = b00 b01
b10 b11

b00 = x00y00 + x01y10

22

Lowered Multiplication

  b = x * y

22

x x x x y y y y

b b b b b b b b

b b b b

23

Efficiency
23

1 2 3 4 5 6
Processors

1

2

3

4

5

6

7

Sp
ee
du
p

leontief
hits
dft
kmeans
hill

24

Idle time
24

dft dma hill hits kmeans leontief markov neura
0

10
20
30
40
50
60
70
80
90

100

Id
le

 ti
m

e
(%

)

task
dma

25

Speedups vs Octave BLAS
25

214

dft dma hill hits kmeans leontief markov neura

1

3

5

7

9

Sp
ee
du
p

26

Scheduling
26

27

Breakdown
27

cleanup (2.74%)

execution (75.59%)

allocation (0.83%)

scheduling (11.40%)

lowering (9.44%)

