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MATLAB and Octave 

  MATLAB 
 High level, interpreted, un-typed language 
 Very popular among scientists and engineers 
  Simple sequential semantics for expressing 

algorithms with matrix operations 
  Slow for large problem sizes 

  Octave 
  Freely available alternative to MATLAB 
  Part of the GNU project 
 Mimics syntax and semantics of MATLAB 
  Libraries of Octave differ to MATLAB libraries 
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Modern Parallel Architectures 

  The limits of performance of traditional 
single-core processors are reached. 

  Fundamental shift towards parallel 
architectures 

  Current popular parallel architectures: 
 Cell Processor (Sony, Toshiba and IBM) 
 Multi-core CPUs (Intel Core2 Series) 
 General Purpose GPUs (Nvidia Tesla) 

  Significant boost of performance 
 15 GFLOPs of a single core vs. 2 TFLOPs 
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The Cell Broadband Architecture 

  Parallel microprocessor architecture 
  Developed by Sony, Toshiba and IBM between 2000 

and 2005 

  Used in the IBM Roadrunner – the worlds fastest 
supercomputer (Top500, > 1 PETAFLOP) 
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The Cell Broadband Architecture 
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Research Questions 

  How do we parallelise a matrix language program 
for modern parallel architectures? 
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Parallelising Matrix Languages 

  A) Translate code by hand 
 Concurrent programming is hard  
 Not trained in concurrent programming 
  Expensive/Time consuming 

  B) Automatically parallelise code 
 Our research 
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Parallel MATLAB 

  2003 survey found 27 Parallel MATLAB projects 
  Limitations 

 Targeted toward distributed parallel architectures 
 Varying degrees of intervention by the 

programmer required 
 Naive approach 

 Only data parallelism of matrix operations exploited 
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PS3: Parallel Octave on the Cell 

  Our extension for the Octave interpreter 
 Minimal changes to existing Octave code for programmer 

  PS3 exploits various parallelism in Octave programs: 
  Data parallelism: splitting matrices 
  Instruction level parallelism: execute independent matrix 

operations in parallel 
  Pipeline parallelism: Communication overlaps with 

computation 
  Task parallelism: concurrent execution of octave programs 

and matrix operations 
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Design 
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Octave Extension 

  Introduced a custom data type called ps3_matrix 

  To utilise our system convert matrices to ps3_matrix 
matrices 
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x = rand(100); 

y = rand(100); 

a = x + y; 

b = x .* y; 

c = a + b; 

disp(c); 

x = ps3_matrix(rand(100)); 

y = ps3_matrix(rand(100)); 

a = x + y; 

b = x .* y; 

c = a + b; 

disp(c); 

Original code Parallel code 
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Octave Extension 

  Lazy evaluation used to collect traces of operations 
whose result is not needed 

  Data dependence graph of these operations 
constructed 
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x = ps3_matrix(rand(100)); 

y = ps3_matrix(rand(100)); 

a = x + y; 

b = x .* y; 

c = a + b; 

disp(c); 

x y 

a b 

c 

Source code Data Dependence Graph 
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Lowering 

  Lowering is triggered by 
evaluating a trace, e.g., 
disp(c) 

  Matrices are split into sub-
matrices 

  Parallel computations of sub-
matrices on SPUs 

  SPEs have 256KB local store 
  Splitting matrices is a 

necessity! 
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Bubble 

Scheduler 

  Lowered operations are 
scheduled among the 
available processors 

  Want to schedule in a way 
that 
 Satisfies data dependencies 

between operations 
 Minimises the makespan of 

execution 
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Schedule 
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Scheduler 

  The scheduling problem is NP-Hard 
  Finding an optimal solution takes too long to do at 

runtime 

  Designed a heuristic 
  Worst-case runtime complexity O(nlogn+m) 
  Earliest instruction is scheduled in first available stream 

  Designed an Integer Linear Program formulation 
  Gives optimal solution  
  Validate the precision of the heuristic 
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Computation Engine 

  Computation engine takes schedule and executes it on 
available processors 

  We implement a computation engine for the Cell 
Processor 

  Matrix Execution Units 
  Each SPE runs a small virtual machine  

 for matrix operations 

  Features used for performance: 
 Double/Triple buffering 
  SIMD operations 
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Benchmarks 

  9 benchmark kernels chosen 
 Octave programs that involve many matrix operations 

  Include: 
 Computing Markov Chains 
 Computing the Discrete Fourier Transform of a signal 
  K-means clustering 
 Neural network training 

  Compared runtime of our system on a Cell processor 
with Intel Core2Quad processor 
 Q9950, 2.83 GHz 
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Results: Speedup vs. Intel Core2 Quad 
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Conclusion 

  New system presented for the automatic 
parallelisation of Octave code on the Cell Processor 
  Exploits several types of parallelism 
  Lazy evaluation to expose instruction level parallelism 
 Schedule operations on processors for maximal utilisation 

of parallel units 

  Results show significant speedups over Octave on 
more recent and more expensive Intel processors 
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Lowered Multiplication 

  b = x * y 

21 

x00 x01 
x10 x11 

y00 y01 
y10 y11 

 1  2  3  4 
 5  6  7  8 
 9 10 11 12 
13 14 15 16 

 1  2  3  4 
 5  6  7  8 
 9 10 11 12 
13 14 15 16 

x = 

x = b00 b01 
b10 b11 

b00 = x00y00 + x01y10   



22 

Lowered Multiplication 

  b = x * y 
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Efficiency 
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Idle time 
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Speedups vs Octave BLAS 
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Scheduling 
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Breakdown 
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cleanup (2.74%)

execution (75.59%)
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