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General Purpose GPU 
Programming (GPGPU)
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MODERN GPUS ARE FREELY PROGRAMMABLE
But no function pointers & limited recursion
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Very Different 
Programming Model
(Compared to multicore CPUs)
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MASSIVELY PARALLEL PROGRAMS NEEDED
Tens of thousands of dataparallel threads

Quadcore
Xeon CPU

Tesla T10 
GPU

hundreds of th
reads/core
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Programming GPUs is 
hard!  Why bother?
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Reduce power consumption!

✴GPU achieves 20x better performance/Watt (judging by peak performance)
✴Speedups between 20x to 150x have been observed in real applications
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Prototype of code generator targeting GPUs
Computation only, without CPU ⇄ GPU transfer
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Plain Haskell, CPU only (AMD Sempron) Plain Haskell, CPU only (Intel Xeon)
Haskell EDSL on a GPU (GeForce 8800GTS) Haskell EDSL on a GPU (Tesla S1070 x1)
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Challenges
Code must be massively dataparallel

Control structures are limited

‣ No function pointers

‣ Very limited recursion

Software-managed cache, memory-access 
patterns, etc.

Portability...
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OTHER COMPUTE ACCELERATOR ARCHITECTURES
Goal: portable data parallelism

Tesla T10 
GPU
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Data.Array.Accelerate
Collective operations on multi-dimensional regular 
arrays

Embedded DSL

‣ Restricted control flow

‣ First-order GPU code

Generative approach based on combinator 
templates

Multiple backends
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import Data.Array.Accelerate

Dot product

dotp :: Vector Float -> Vector Float 
-> Acc (Scalar Float)

dotp xs ys 
  = let
      xs' = use xs
      ys' = use ys
    in
    fold (+) 0 (zipWith (*) xs' ys')
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Dot product
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Haskell 
array

EDSL array =
desc. of array comps

Lift Haskell arrays into 
EDSL — may trigger 
host➙device transfer

EDSL array 
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import Data.Array.Accelerate
Sparse-matrix vector multiplication

type SparseVector a = Vector (Int, a)
type SparseMatrix a = (Segments, SparseVector a)

smvm :: Acc (SparseMatrix Float) 
     -> Acc (Vector Float) 
     -> Acc (Vector Float)
smvm (segd, smat) vec
  = let
      (inds, vals) = unzip smat
      vecVals      = backpermute (shape inds)
                           (\i -> inds!i) vec
      products     = zipWith (*) vecVals vals
    in
    foldSeg (+) 0 products segd
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import Data.Array.Accelerate
Sparse-matrix vector multiplication

type SparseVector a = Vector (Int, a)
type SparseMatrix a = (Segments, SparseVector a)

smvm :: Acc (SparseMatrix Float) 
     -> Acc (Vector Float) 
     -> Acc (Vector Float)
smvm (segd, smat) vec
  = let
      (inds, vals) = unzip smat
      vecVals      = backpermute (shape inds)
                           (\i -> inds!i) vec
      products     = zipWith (*) vecVals vals
    in
    foldSeg (+) 0 products segd

[0, 0, 6.0, 0, 7.0] ≈ [(2, 6.0), (4, 7.0)]

[[10, 20], [], [30]] ≈ ([2, 0, 1], [10, 20, 30])

Friday, 2 October 2009



Architecture of
Data.Array.Accelerate
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map (\x -> x + 1) arr
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map (\x -> x + 1) arr

Reify & HOAS -> de Bruijn

Map (Lam (Add `PrimApp` 
      (ZeroIdx, Const 1))) arr
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map (\x -> x + 1) arr

Reify & HOAS -> de Bruijn

Map (Lam (Add `PrimApp` 
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(Fusion)
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Code generation
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The API of
Data.Array.Accelerate
(The main bits)
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Array types

data Array dim e    — regular, multi-dimensional arrays

type DIM0 = ()
type DIM1 = Int
type DIM2 = (Int, Int)
⟨and so on⟩

type Scalar e = Array DIM0 e
type Vector e = Array DIM1 e
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Array types

data Array dim e    — regular, multi-dimensional arrays

type DIM0 = ()
type DIM1 = Int
type DIM2 = (Int, Int)
⟨and so on⟩

type Scalar e = Array DIM0 e
type Vector e = Array DIM1 e

EDSL forms

data Exp e         — scalar expression form
data Acc a         — array expression form

Classes

class Elem e               — scalar and tuples types
class Elem ix => Ix ix     — unit and integer tuples
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Scalar operations

instance Num (Exp e)         — overloaded arithmetic
instance Integral (Exp e)
⟨and so on⟩

(==*), (/=*), (<*), (<=*),   — comparisons
  (>*), (>=*), min, max
(&&*), (||*), not            — logical operators

(?) :: Elem t                — conditional expression
    => Exp Bool -> (Exp t, Exp t) -> Exp t

(!) :: (Ix dim, Elem e)      — scalar indexing
    => Acc (Array dim e) -> Exp dim -> Exp e

shape :: Ix dim              — yield array shape
      => Acc (Array dim e) -> Exp dim
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Collective array operations — creation

    — use an array from Haskell land
use :: (Ix dim, Elem e)
    => Array dim e -> Acc (Array dim e)

   — create a singleton
unit :: Elem e => Exp e -> Acc (Scalar e)

   — multi-dimensional replication
replicate :: (SliceIx slix, Elem e) 
          => Exp slix 
          -> Acc (Array (Slice    slix) e) 
          -> Acc (Array (SliceDim slix) e)

— Example: replicate (All, 10, All) twoDimArr
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Collective array operations — slicing

   — slice extraction
slice :: (SliceIx slix, Elem e) 
      => Acc (Array (SliceDim slix) e) 
      -> Exp slix 
      -> Acc (Array (Slice slix) e)

— Example: slice (5, All, 7) threeDimArr
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Collective array operations — mapping

map :: (Ix dim, Elem a, Elem b) 
    => (Exp a -> Exp b) 
    -> Acc (Array dim a)
    -> Acc (Array dim b)

zipWith :: (Ix dim, Elem a, Elem b, Elem c)
        => (Exp a -> Exp b -> Exp c) 
        -> Acc (Array dim a)
        -> Acc (Array dim b)
        -> Acc (Array dim c)
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Collective array operations — reductions

fold :: (Ix dim, Elem a)
     => (Exp a -> Exp a -> Exp a)  — associative
     -> Exp a 
     -> Acc (Array dim a)
     -> Acc (Scalar a)

scan :: Elem a 
     => (Exp a -> Exp a -> Exp a)  — associative
     -> Exp a 
     -> Acc (Vector a)
     -> (Acc (Vector a), Acc (Scalar a))
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Collective array operations — permutations

permute :: (Ix dim, Ix dim', Elem a)
        => (Exp a -> Exp a -> Exp a) 
        -> Acc (Array dim' a) 
        -> (Exp dim -> Exp dim') 
        -> Acc (Array dim  a) 
        -> Acc (Array dim' a)

backpermute :: (Ix dim, Ix dim', Elem a)
            => Exp dim' 
            -> (Exp dim' -> Exp dim) 
            -> Acc (Array dim  a) 
            -> Acc (Array dim' a)

Friday, 2 October 2009



Regular arrays in package dph-seq
@ 3.06 GHz Core 2 Duo (with GHC 6.11)
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Conclusion
EDSL for processing multi-dimensional arrays

Collective array operations (highly data parallel)

Support for multiple backends

Status:

‣ Very early version on Hackage (only interpreter)

http://hackage.haskell.org/package/accelerate

‣ Currently porting GPU backend over

‣ Looking for backend contributors
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