
HASKELL ARRAYS, ACCELERATED

USING GPUS
Manuel M. T. Chakravarty
University of New South Wales

JOINT WORK WITH

Gabriele Keller
Sean Lee

Friday, 2 October 2009

General Purpose GPU
Programming (GPGPU)

Friday, 2 October 2009

MODERN GPUS ARE FREELY PROGRAMMABLE
But no function pointers & limited recursion

Friday, 2 October 2009

MODERN GPUS ARE FREELY PROGRAMMABLE
But no function pointers & limited recursion

Friday, 2 October 2009

Very Different
Programming Model
(Compared to multicore CPUs)

Friday, 2 October 2009

MASSIVELY PARALLEL PROGRAMS NEEDED
Tens of thousands of dataparallel threads

Quadcore
Xeon CPU

Tesla T10
GPU

hundreds of th
reads/core

Friday, 2 October 2009

Programming GPUs is
hard! Why bother?

Friday, 2 October 2009

Reduce power consumption!

✴GPU achieves 20x better performance/Watt (judging by peak performance)
✴Speedups between 20x to 150x have been observed in real applications

Friday, 2 October 2009

Prototype of code generator targeting GPUs
Computation only, without CPU ⇄ GPU transfer

0.1

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sparse Matrix Vector Multiplication

Ti
m

e
(m

ill
is

ec
on

d
s)

Number of non-zero elements (million)

Plain Haskell, CPU only (AMD Sempron) Plain Haskell, CPU only (Intel Xeon)
Haskell EDSL on a GPU (GeForce 8800GTS) Haskell EDSL on a GPU (Tesla S1070 x1)

Friday, 2 October 2009

Challenges
Code must be massively dataparallel

Control structures are limited

‣ No function pointers

‣ Very limited recursion

Software-managed cache, memory-access
patterns, etc.

Portability...

Friday, 2 October 2009

OTHER COMPUTE ACCELERATOR ARCHITECTURES
Goal: portable data parallelism

Tesla T10
GPU

Friday, 2 October 2009

OTHER COMPUTE ACCELERATOR ARCHITECTURES
Goal: portable data parallelism

Tesla T10
GPU

Friday, 2 October 2009

OTHER COMPUTE ACCELERATOR ARCHITECTURES
Goal: portable data parallelism

Tesla T10
GPU

Friday, 2 October 2009

OTHER COMPUTE ACCELERATOR ARCHITECTURES
Goal: portable data parallelism

Tesla T10
GPU

Friday, 2 October 2009

Data.Array.Accelerate
Collective operations on multi-dimensional regular
arrays

Embedded DSL

‣ Restricted control flow

‣ First-order GPU code

Generative approach based on combinator
templates

Multiple backends

Friday, 2 October 2009

Data.Array.Accelerate
Collective operations on multi-dimensional regular
arrays

Embedded DSL

‣ Restricted control flow

‣ First-order GPU code

Generative approach based on combinator
templates

Multiple backends

✓ massive data parallelism

Friday, 2 October 2009

Data.Array.Accelerate
Collective operations on multi-dimensional regular
arrays

Embedded DSL

‣ Restricted control flow

‣ First-order GPU code

Generative approach based on combinator
templates

Multiple backends

✓ massive data parallelism

✓ limited control structures

Friday, 2 October 2009

Data.Array.Accelerate
Collective operations on multi-dimensional regular
arrays

Embedded DSL

‣ Restricted control flow

‣ First-order GPU code

Generative approach based on combinator
templates

Multiple backends

✓ massive data parallelism

✓ limited control structures

✓ hand-tuned access patterns

Friday, 2 October 2009

Data.Array.Accelerate
Collective operations on multi-dimensional regular
arrays

Embedded DSL

‣ Restricted control flow

‣ First-order GPU code

Generative approach based on combinator
templates

Multiple backends

✓ massive data parallelism

✓ limited control structures

✓ hand-tuned access patterns

✓ portability

Friday, 2 October 2009

import Data.Array.Accelerate

Dot product

dotp :: Vector Float -> Vector Float
-> Acc (Scalar Float)

dotp xs ys
 = let
 xs' = use xs
 ys' = use ys
 in
 fold (+) 0 (zipWith (*) xs' ys')

Friday, 2 October 2009

import Data.Array.Accelerate

Dot product

dotp :: Vector Float -> Vector Float
-> Acc (Scalar Float)

dotp xs ys
 = let
 xs' = use xs
 ys' = use ys
 in
 fold (+) 0 (zipWith (*) xs' ys')

Haskell
array

Friday, 2 October 2009

import Data.Array.Accelerate

Dot product

dotp :: Vector Float -> Vector Float
-> Acc (Scalar Float)

dotp xs ys
 = let
 xs' = use xs
 ys' = use ys
 in
 fold (+) 0 (zipWith (*) xs' ys')

Haskell
array

EDSL array =
desc. of array comps

Friday, 2 October 2009

import Data.Array.Accelerate

Dot product

dotp :: Vector Float -> Vector Float
-> Acc (Scalar Float)

dotp xs ys
 = let
 xs' = use xs
 ys' = use ys
 in
 fold (+) 0 (zipWith (*) xs' ys')

Haskell
array

EDSL array =
desc. of array comps

Lift Haskell arrays into
EDSL — may trigger
host➙device transfer

Friday, 2 October 2009

import Data.Array.Accelerate

Dot product

dotp :: Vector Float -> Vector Float
-> Acc (Scalar Float)

dotp xs ys
 = let
 xs' = use xs
 ys' = use ys
 in
 fold (+) 0 (zipWith (*) xs' ys')

Haskell
array

EDSL array =
desc. of array comps

Lift Haskell arrays into
EDSL — may trigger
host➙device transfer

EDSL array
computations

Friday, 2 October 2009

import Data.Array.Accelerate
Sparse-matrix vector multiplication

type SparseVector a = Vector (Int, a)
type SparseMatrix a = (Segments, SparseVector a)

smvm :: Acc (SparseMatrix Float)
 -> Acc (Vector Float)
 -> Acc (Vector Float)
smvm (segd, smat) vec
 = let
 (inds, vals) = unzip smat
 vecVals = backpermute (shape inds)
 (\i -> inds!i) vec
 products = zipWith (*) vecVals vals
 in
 foldSeg (+) 0 products segd

Friday, 2 October 2009

import Data.Array.Accelerate
Sparse-matrix vector multiplication

type SparseVector a = Vector (Int, a)
type SparseMatrix a = (Segments, SparseVector a)

smvm :: Acc (SparseMatrix Float)
 -> Acc (Vector Float)
 -> Acc (Vector Float)
smvm (segd, smat) vec
 = let
 (inds, vals) = unzip smat
 vecVals = backpermute (shape inds)
 (\i -> inds!i) vec
 products = zipWith (*) vecVals vals
 in
 foldSeg (+) 0 products segd

[0, 0, 6.0, 0, 7.0] ≈ [(2, 6.0), (4, 7.0)]

Friday, 2 October 2009

import Data.Array.Accelerate
Sparse-matrix vector multiplication

type SparseVector a = Vector (Int, a)
type SparseMatrix a = (Segments, SparseVector a)

smvm :: Acc (SparseMatrix Float)
 -> Acc (Vector Float)
 -> Acc (Vector Float)
smvm (segd, smat) vec
 = let
 (inds, vals) = unzip smat
 vecVals = backpermute (shape inds)
 (\i -> inds!i) vec
 products = zipWith (*) vecVals vals
 in
 foldSeg (+) 0 products segd

[0, 0, 6.0, 0, 7.0] ≈ [(2, 6.0), (4, 7.0)]

[[10, 20], [], [30]] ≈ ([2, 0, 1], [10, 20, 30])

Friday, 2 October 2009

Architecture of
Data.Array.Accelerate

Friday, 2 October 2009

map (\x -> x + 1) arr

Friday, 2 October 2009

map (\x -> x + 1) arr

Reify & HOAS -> de Bruijn

Map (Lam (Add `PrimApp`
 (ZeroIdx, Const 1))) arr

Friday, 2 October 2009

map (\x -> x + 1) arr

Reify & HOAS -> de Bruijn

Map (Lam (Add `PrimApp`
 (ZeroIdx, Const 1))) arr

Recover sharing(CSE or Observe)

Friday, 2 October 2009

map (\x -> x + 1) arr

Reify & HOAS -> de Bruijn

Map (Lam (Add `PrimApp`
 (ZeroIdx, Const 1))) arr

Recover sharing(CSE or Observe)
Optimisation

(Fusion)

Friday, 2 October 2009

map (\x -> x + 1) arr

Reify & HOAS -> de Bruijn

Map (Lam (Add `PrimApp`
 (ZeroIdx, Const 1))) arr

Recover sharing(CSE or Observe)
Optimisation

(Fusion)

__global__ void kernel (float *arr, int n)
{...

Code generation

Friday, 2 October 2009

map (\x -> x + 1) arr

Reify & HOAS -> de Bruijn

Map (Lam (Add `PrimApp`
 (ZeroIdx, Const 1))) arr

Recover sharing(CSE or Observe)
Optimisation

(Fusion)

__global__ void kernel (float *arr, int n)
{...

Code generation

nvcc

Friday, 2 October 2009

map (\x -> x + 1) arr

Reify & HOAS -> de Bruijn

Map (Lam (Add `PrimApp`
 (ZeroIdx, Const 1))) arr

Recover sharing(CSE or Observe)
Optimisation

(Fusion)

__global__ void kernel (float *arr, int n)
{...

Code generation

nvcc

package

plugins

Friday, 2 October 2009

The API of
Data.Array.Accelerate
(The main bits)

Friday, 2 October 2009

Array types

data Array dim e — regular, multi-dimensional arrays

type DIM0 = ()
type DIM1 = Int
type DIM2 = (Int, Int)
⟨and so on⟩

type Scalar e = Array DIM0 e
type Vector e = Array DIM1 e

Friday, 2 October 2009

Array types

data Array dim e — regular, multi-dimensional arrays

type DIM0 = ()
type DIM1 = Int
type DIM2 = (Int, Int)
⟨and so on⟩

type Scalar e = Array DIM0 e
type Vector e = Array DIM1 e

EDSL forms

data Exp e — scalar expression form
data Acc a — array expression form

Friday, 2 October 2009

Array types

data Array dim e — regular, multi-dimensional arrays

type DIM0 = ()
type DIM1 = Int
type DIM2 = (Int, Int)
⟨and so on⟩

type Scalar e = Array DIM0 e
type Vector e = Array DIM1 e

EDSL forms

data Exp e — scalar expression form
data Acc a — array expression form

Classes

class Elem e — scalar and tuples types
class Elem ix => Ix ix — unit and integer tuples

Friday, 2 October 2009

Scalar operations

instance Num (Exp e) — overloaded arithmetic
instance Integral (Exp e)
⟨and so on⟩

(==*), (/=*), (<*), (<=*), — comparisons
 (>*), (>=*), min, max
(&&*), (||*), not — logical operators

(?) :: Elem t — conditional expression
 => Exp Bool -> (Exp t, Exp t) -> Exp t

(!) :: (Ix dim, Elem e) — scalar indexing
 => Acc (Array dim e) -> Exp dim -> Exp e

shape :: Ix dim — yield array shape
 => Acc (Array dim e) -> Exp dim

Friday, 2 October 2009

Collective array operations — creation

 — use an array from Haskell land
use :: (Ix dim, Elem e)
 => Array dim e -> Acc (Array dim e)

 — create a singleton
unit :: Elem e => Exp e -> Acc (Scalar e)

 — multi-dimensional replication
replicate :: (SliceIx slix, Elem e)
 => Exp slix
 -> Acc (Array (Slice slix) e)
 -> Acc (Array (SliceDim slix) e)

— Example: replicate (All, 10, All) twoDimArr

Friday, 2 October 2009

Collective array operations — slicing

 — slice extraction
slice :: (SliceIx slix, Elem e)
 => Acc (Array (SliceDim slix) e)
 -> Exp slix
 -> Acc (Array (Slice slix) e)

— Example: slice (5, All, 7) threeDimArr

Friday, 2 October 2009

Collective array operations — mapping

map :: (Ix dim, Elem a, Elem b)
 => (Exp a -> Exp b)
 -> Acc (Array dim a)
 -> Acc (Array dim b)

zipWith :: (Ix dim, Elem a, Elem b, Elem c)
 => (Exp a -> Exp b -> Exp c)
 -> Acc (Array dim a)
 -> Acc (Array dim b)
 -> Acc (Array dim c)

Friday, 2 October 2009

Collective array operations — reductions

fold :: (Ix dim, Elem a)
 => (Exp a -> Exp a -> Exp a) — associative
 -> Exp a
 -> Acc (Array dim a)
 -> Acc (Scalar a)

scan :: Elem a
 => (Exp a -> Exp a -> Exp a) — associative
 -> Exp a
 -> Acc (Vector a)
 -> (Acc (Vector a), Acc (Scalar a))

Friday, 2 October 2009

Collective array operations — permutations

permute :: (Ix dim, Ix dim', Elem a)
 => (Exp a -> Exp a -> Exp a)
 -> Acc (Array dim' a)
 -> (Exp dim -> Exp dim')
 -> Acc (Array dim a)
 -> Acc (Array dim' a)

backpermute :: (Ix dim, Ix dim', Elem a)
 => Exp dim'
 -> (Exp dim' -> Exp dim)
 -> Acc (Array dim a)
 -> Acc (Array dim' a)

Friday, 2 October 2009

Regular arrays in package dph-seq
@ 3.06 GHz Core 2 Duo (with GHC 6.11)

1

10

100

1000

10000

100000

1000000

128 256 512 1024

Dense Matrix-Matrix Multiplication
Ti

m
e

(m
ill

is
ec

on
d

s)

size of square NxN matrix

Unboxed Haskell arrays Delayed arrays Plain C Mac OS vecLib

Friday, 2 October 2009

Conclusion
EDSL for processing multi-dimensional arrays

Collective array operations (highly data parallel)

Support for multiple backends

Status:

‣ Very early version on Hackage (only interpreter)

http://hackage.haskell.org/package/accelerate

‣ Currently porting GPU backend over

‣ Looking for backend contributors

Friday, 2 October 2009

