HASKELL ARRAYS, ACCELERATED
UsING GPUS




General Purpose GPU
Programming (GPGPU)
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MobDERN GPUS ARE FREELY PROGRAMMABLE

But no function pointers & limited recursion
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But no function pointers & limited recursion

MobDERN GPUS ARE FREELY PROGRAMMABLE
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Very Different
Programming Model

(Compared to multicore CPUSs)

PLS
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Quadcore Tesla T10
Xeon CPU GPU

] Julalaiple H EEEEREEN

=240 cores::

MASSIVELY PARALLEL PROGRAMS NEEDED

Tens of thousands of dataparallel threads
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Programming GPUS is
hard! \Why bother?

PLS
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Reduce power consumption!

* GPU achieves 20x better performance/Watt (judging by peak performance)
* Speedups between 20x to 150x have been observed in real applications
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Sparse Matrix Vector Multiplication
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© Plain Haskell, CPU only (AMD Sempron) © Plain Haskell, CPU only (Intel Xeon)
Haskell EDSL on a GPU (GeForce 8800GTS) < Haskell EDSL on a GPU (Tesla S1070 x1)

Prototype of code generator targeting GPUs

Computation only, without CPU = GPU transfer
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Challenges

% Code must be massively dataparallel
% Control structures are limited

» No function pointers

» Very limited recursion

* Software-managed cache, memory-access
patterns, etc.

* Portabillity... "ﬁ
PLS
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2240 cores::

Tesla T10
GPU

OTHER COMPUTE ACCELERATOR ARCHITECTURES

Goal: portable data parallelism
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OTHER COMPUTE ACCELERATOR ARCHITECTURES
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OTHER COMPUTE ACCELERATOR ARCHITECTURES
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OTHER COMPUTE ACCELERATOR ARCHITECTURES

Goal: portable data parallelism
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Data.Array.Accelerate

% Collective operations on multi-dimensional regular
arrays

* Embedded DSL
» Restricted control flow
» First-order GPU code

* Generative approach based on combinator
templates

~
* Multiple backends 1%?
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import Data.Array.Accelerate

Dot product

dotp :: Vector Float -> Vector Float
-> Acc (Scalar Float)
dotp xs ys
= let
RS,
ys'
in
fold (+) 0 (zipWith (*) xs' ys')

use XS
use ys

PLS
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import Data.Array.Accelerate

Haskell Ot prOdUCt
array
dotp :: Vector Float -> Vector Float

-> Acc (Scalar Float)

dotp Xs ys
= let
SR el SEes XS
ys' = use ys
in

fold (+) 0 (zipWith (*) xs' ys')

,t)§>

PLS
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import Data.Array.Accelerate

Haskell Ot prOdUCt
array
dotp :: Vector Float -> Vector Float

—-> Acc_(Scalar Float)
dOEp e EDSL array =
T , desc. of array comps
Xs' = use Xs
ys' = use ys
in

fold (+) 0 (zipWith (*) xs' ys')
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import Data.Array.Accelerate

Haskell Ot prOdUCt
array
dotp :: Vector Float -> Vector Float

—-> Acc_(Scalar Float)

dOEp S EDSL array =
= e : desc. of array comps
XS ==
VS =
in Lift Haskell arrays into
fold (+) 0 (zipWith (*) xs' =P I{IEEVEICTolel=]

host=—>device transfer
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import Data.Array.Accelerate

Haskell Ot prOdUCt
array
dotp :: Vector Float -> Vector Float

—-> Acc_(Scalar Float)

dOEp S EDSL array =
= e : desc. of array comps
XS ==
VS =
in Lift Haskell arrays into
fold (&) 0 (zipWith (*) xs' [SESIop{IEEVETCToll= ]

host=—>device transfer

EDSL array

computations ,‘)X)
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Sparse-matrix vector multiplication

type SparseVector a = Vector (Int, a)
type SparseMatrix a = (Segments, SparseVector a)

smvm :: Acc (SparseMatrix Float)
—-> Acc (Vector Float)
-> Acc (Vector Float)

smvim (segd, smat) vec

= let
(inds, vals) = unzip smat
vecVals = backpermute (shape 1inds)
(\i => inds!i) vec
products = zipWith (*) wvecVals vals
in

foldSeg (+) 0 products segd
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import Data.Arrg

[0, 0, 6.0, 0, 7.0] = [(2, 6.0), (4, 7.0)]

Sparse-matri

type SparseVectOr a = Vector (Int, a)
type SparseMatrix a = (Segments, SparseVector a)

smvm :: Acc (SparseMatrix Float)
-> Acc (Vector Float)
-> Acc (Vector Float)

smvin (segd, smat) vec

= let
(inds, vals) = unzip smat
vecVals = backpermute (shape inds)
(\i => inds!i) vec
products = zipWith (*) wvecVals vals
in

foldSeg (+) 0 products segd
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mport Data.Arrg

Sparse-matri

type SparseVec
type

smvin < s

smvm (segd,
= let
(inds, vals)
vecVals

products
in

Or a
SparseMatrix a

Acc (SparseMatrix Float
-> Acc (Vector Floa
—> Acc (Vector Float
smat) vec

/\

&

[0, 0, 6.0, 0, 7.0] = [(2, 6.0), (4, 7.0)]

Vector (Int,
(Segments

a)
SparseVector a)

[[10, 201, [], [30]] = (2, O, 1], [10, 20, 30])

unzip smat

backpermute (shape inds)
(\i -> inds!i) vec

zipWith (*) vecVals vals

foldSeg (+) 0 products segd
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Architecture of
Data.Array.Accelerate

PLS
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map (\x -> x + 1) arr
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map (\x -> x + 1) arr

Map (Lam (Add PrimApp
(Zeroldx, Const 1))) arr

Friday, 2 October 2009



map (\x -> x + 1) arr

Map (Lam (Add PrimApp
(Zeroldx, Const 1))) arr
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map (\x -> x + 1) arr

Map (Lam (Add PrimApp
(Zeroldx, Const 1))) arr
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map (\x -> x + 1) arr

Map (Lam (Add PrimApp
(Zeroldx, Const 1))) arr

\ Code generation

__global void kernel (float *arr, int n)

I
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map (\x -> x + 1) arr

Map (Lam (Add PrimApp
(Zeroldx, Const 1))) arr

\ Code generation

__global void kernel (float *arr, int n)

I
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map (\x -> x + 1) arr

Map (Lam (Add PrimApp
(Zeroldx, Const 1))) arr

\ Code generation

__global void kernel (float *arr, int n)

I
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1The API of
Data.Array.Accelerate

(The main bits)

PLS
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Array types

data Array dim e — regular, multi-dimensional arrays

type DIMO = ()

type DIM1 = Int

type DIM2 = (Int, Int)
(and so on)

®
I

type Scalar
type Vector e

= Array DIMO e
Array DIM1 e
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Array types

data Array dim e — regular, multi-dimensional arrays

type DIMO = ()

type DIM1 = Int

type DIM2 = (Int, Int)
(and so on)

type Scalar e = Array DIMO e
type Vector e Array DIMI1 e

EDSL forms

data Exp e — scalar expression form
data Acc a — array expression form
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Array types

data Array dim e — regular, multi-dimensional arrays

type DIMO = ()
type DIM1 = Int

type DIM2 = (Int, Int)
(and so on)
type Scalar e = Array DIMO e

type Vector e Array DIMI1 e

EDSL forms
data Exp e — scalar expression form
data Acc a — array expression form
Classes
class Elem e — scalar and tuples types

class Elem ix => Ix ix — unit and integer tuples
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Scalar operations

instance Num (Exp e) — overloaded arithmetic
instance Integral (Exp e)
{and so on)
G e (e T B e — comparisons
(>*), (>=*), min, max
(&&*), (|]|*), not — logical operators
(2l Il em st — conditional expression

=> Exp Bool -> (Exp t, Exp t) -> Exp t

(!) :: (Ix dim, Elem e) — scalar indexing
=> Acc (Array dim e) -> Exp dim -> Exp e

shape :: Ix dim — vyield array shape
=> Acc (Array dim e) -> Exp dim
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Collective array operations — creation

— use an array from Haskell land
use :: (Ix dim, Elem e)
=> Array dim e -> Acc (Array dim e)

— create a singleton
unit s Elem<e =>-Exp e —> Acc (Scalar e)

— multi-dimensional replication

replicate :: (SlicelIx slix, Elem e)
=> ExXp slix
-> Acc (Array (Slice slix) e)

-> Acc (Array (SliceDim slix) e)

— Example: replicate (All, 10, All) twoDimArr
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Collective array operations — slicing

— slice extraction
slice :: (SlicelIx slix, Elem e)
=> Acc (Array (SliceDim slix) e)
-> Exp slix
-> Acc (Array (Slice slix) e)

— Example: slice (5, All, 7) threeDimArr
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Collective array operations — mapping

map :: (IX dim, Elem a, Elem b)
=> (Exp a -> Exp b)

-> Acc

-> AccC

Z:3 Dt laetss
==

=

=

=

(Array dim a)
(Array dim b)

(IX dim, Elem a, Elem b, Elem c)
(Exp a -> Exp b -> Exp ¢)

Acc (Array dim a)

Acc (Array dim b)

Acc (Array dim c)
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fold

sSCan

Collective array operations — reductions

(IX dim, Elem a)

(EXp a -> Exp a -> Exp a) — associative
Exp a
Acc (Array dim a)

Acc (Scalar a)

Elem a

(EXp a -> Exp a -> Exp a) — associative
ExXp a

Acc (Vector a)

(Acc (Vector a), Acc (Scalar a))
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Collective array operations — permutations

permute :: (IX dim, IxXx dim', Elem a)
=> (Exp a -> Exp a -> Exp a)
-> Acc (Array dim' a)
-> (Exp dim -> Exp dim')
-> Acc (Array dim a)
-> Acc (Array dim' a)

backpermute :: (Ix dim, IxX dim', Elem a)
=> Exp dim'
-> (Exp dim' -> Exp dim)
-> Acc (Array dim a)
-> Acc (Array dim' a)
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Dense Matrix-Matrix Multiplication
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128 256 512 1024
size of square NxN matrix
© Unboxed Haskell arrays © Delayed arrays Plain C © Mac OS vecLib

Regular arrays in package dph-seq
@ 3.06 GHz Core 2 Duo (with GHC 6.11)
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Conclusion

% EDSL for processing multi-dimensional arrays
* Collective array operations (highly data parallel)
* Support for multiple backends

% Status:

» Very early version on Hackage (only interpreter)

http://hackage.haskell.org/package/accelerate

» Currently porting GPU backend over

» Looking for backend contributors PLS
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