HASKELL ARRAYS, ACCELERATED
UsING GPUS

General Purpose GPU
Programming (GPGPU)

PLS

Friday, 2 October 2009

(TR0 [POS) Perbadiant & o8 CINTAY 20WN
Sourdis wns Wl) Zew e
P DA s 1 Ted Mvrbdaglem At oL W Iachemnt_ 1 |

sPACKENDACKEN ‘v-iv Sentry Gun {KerbdogZero)

MobDERN GPUS ARE FREELY PROGRAMMABLE

But no function pointers & limited recursion

Friday, 2 October 2009

146X

149X

Financal samulation of
LIBOR Model with

36X

Interactive visualzabon of molecular dynarmics
volumetnc thfty r:\aﬂe' simulation on Gl R
connecuy
-

ATX

GLAME@lab: An M-scrigt

AP for Linear Ngeb‘f’
Operations on GPU

=l
19

Transcoding HD video
stream to H.264 for

portable wdeo”

O

20X

Uttrasound medical
imaging for cancer
diagnostics®

—

But no function pointers & limited recursion

MobDERN GPUS ARE FREELY PROGRAMMABLE

Friday, 2 October 2009

Very Different
Programming Model

(Compared to multicore CPUSs)

PLS

Friday, 2 October 2009

Quadcore Tesla T10
Xeon CPU GPU

] Julalaiple H EEEEREEN

=240 cores::

MASSIVELY PARALLEL PROGRAMS NEEDED

Tens of thousands of dataparallel threads

Friday, 2 October 2009

Programming GPUS is
hard! \Why bother?

PLS

Friday, 2 October 2009

Reduce power consumption!

* GPU achieves 20x better performance/Watt (judging by peak performance)
* Speedups between 20x to 150x have been observed in real applications

Friday, 2 October 2009

Sparse Matrix Vector Multiplication
1000

100

Time (milliseconds)
S

0.1
o1 02 03 04 05 06 07 08 0.9 1

Number of non-zero elements (million)

© Plain Haskell, CPU only (AMD Sempron) © Plain Haskell, CPU only (Intel Xeon)
Haskell EDSL on a GPU (GeForce 8800GTS) < Haskell EDSL on a GPU (Tesla S1070 x1)

Prototype of code generator targeting GPUs

Computation only, without CPU = GPU transfer

Friday, 2 October 2009

Challenges

% Code must be massively dataparallel
% Control structures are limited

» No function pointers

» Very limited recursion

* Software-managed cache, memory-access
patterns, etc.

* Portabillity... "ﬁ
PLS

Friday, 2 October 2009

EEEEEEEE EEEEEEEE

2240 cores::

Tesla T10
GPU

OTHER COMPUTE ACCELERATOR ARCHITECTURES

Goal: portable data parallelism

Friday, 2 October 2009

Larrabee Block Diagram

§
3
|

L2 Cache

w
2

Texture Log

el

System Interface Display Interface

Memory Controller

N

OTHER COMPUTE ACCELERATOR ARCHITECTURES

Friday, 2 October 2009

OTHER COMPUTE ACCELERATOR ARCHITECTURES

Friday, 2 October 2009

4Mbytes B 4Mbytes B 4Mbytes

QDR IISRAM QDR IISRAM QDR Il SRAM

. . 18-bit 18-bit, 200MHz

GP 1/0 (64-bit)

me Virtex-5 FPGA
(LX110) &

64-bit, 133MHz PCI-X

16-bit, 200MH2¢
64Mbuytes 64Mbuytes 256Mbit
DDR SORAM DDR SDRAM FLASH

'({

OTHER COMPUTE ACCELERATOR ARCHITECTURES

Goal: portable data parallelism

Friday, 2 October 2009

Data.Array.Accelerate

% Collective operations on multi-dimensional regular
arrays

* Embedded DSL
» Restricted control flow
» First-order GPU code

* Generative approach based on combinator
templates

~
* Multiple backends 1%?

Friday, 2 October 2009

Data.Array.Accelerate

Qata\\eV‘sm

| . =
* Collective operations on multizgyes
arrays J

* Embedded DSL
» Restricted control flow
» First-order GPU code

* Generative approach based on combinator
templates

)=
* Multiple backends g:

Friday, 2 October 2009

Data.Array. Acce\erate

% Collective operations on mu!tic omial regular
arrays J

% Embedded DSL

| . ures
» Restricted contra! ;\@\/S““c"
. xed cO
» First-orad code

* Generative approach based on combinator
templates

,‘; _
* Multiple backends Jz

Friday, 2 October 2009

Data.Array.Accelerate

a\\e\“s“‘
al regular

. : |
% Collective operations on mu e\
arrays J

ga12 8%

% Embedded DSL

XY
* Generative apprr\%ﬂ“@é y combinator
templates {18

* Multiple backends gs)

Friday, 2 October 2009

Data.Array. Acce\erate

* Collective operations on mu'tagye 8CSerTal regular
arrays J

* Embedded DSL
\(es
» Restricted contro! ;\@\/S““G\
. el cO
» First-ora code i
s PO
* Generative appro T‘\mé y combinator
templates {18

* Multiple RM/ :,%:)

Friday, 2 October 2009

import Data.Array.Accelerate

Dot product

dotp :: Vector Float -> Vector Float
-> Acc (Scalar Float)
dotp xs ys
= let
RS,
ys'
in
fold (+) 0 (zipWith (*) xs' ys')

use XS
use ys

PLS

Friday, 2 October 2009

import Data.Array.Accelerate

Haskell Ot prOdUCt
array
dotp :: Vector Float -> Vector Float

-> Acc (Scalar Float)

dotp Xs ys
= let
SR el SEes XS
ys' = use ys
in

fold (+) 0 (zipWith (*) xs' ys')

,t)§>

PLS

Friday, 2 October 2009

import Data.Array.Accelerate

Haskell Ot prOdUCt
array
dotp :: Vector Float -> Vector Float

—-> Acc_(Scalar Float)
dOEp e EDSL array =
T , desc. of array comps
Xs' = use Xs
ys' = use ys
in

fold (+) 0 (zipWith (*) xs' ys')

Friday, 2 October 2009

import Data.Array.Accelerate

Haskell Ot prOdUCt
array
dotp :: Vector Float -> Vector Float

—-> Acc_(Scalar Float)

dOEp S EDSL array =
= e : desc. of array comps
XS ==
VS =
in Lift Haskell arrays into
fold (+) 0 (zipWith (*) xs' =P I{IEEVEICTolel=]

host=—>device transfer

Friday, 2 October 2009

import Data.Array.Accelerate

Haskell Ot prOdUCt
array
dotp :: Vector Float -> Vector Float

—-> Acc_(Scalar Float)

dOEp S EDSL array =
= e : desc. of array comps
XS ==
VS =
in Lift Haskell arrays into
fold (&) 0 (zipWith (*) xs' [SESIop{IEEVETCToll=]

host=—>device transfer

EDSL array

computations ,‘)X)

Friday, 2 October 2009

Sparse-matrix vector multiplication

type SparseVector a = Vector (Int, a)
type SparseMatrix a = (Segments, SparseVector a)

smvm :: Acc (SparseMatrix Float)
—-> Acc (Vector Float)
-> Acc (Vector Float)

smvim (segd, smat) vec

= let
(inds, vals) = unzip smat
vecVals = backpermute (shape 1inds)
(\i => inds!i) vec
products = zipWith (*) wvecVals vals
in

foldSeg (+) 0 products segd

Friday, 2 October 2009

/\

&

import Data.Arrg

[0, 0, 6.0, 0, 7.0] = [(2, 6.0), (4, 7.0)]

Sparse-matri

type SparseVectOr a = Vector (Int, a)
type SparseMatrix a = (Segments, SparseVector a)

smvm :: Acc (SparseMatrix Float)
-> Acc (Vector Float)
-> Acc (Vector Float)

smvin (segd, smat) vec

= let
(inds, vals) = unzip smat
vecVals = backpermute (shape inds)
(\i => inds!i) vec
products = zipWith (*) wvecVals vals
in

foldSeg (+) 0 products segd

Friday, 2 October 2009

mport Data.Arrg

Sparse-matri

type SparseVec
type

smvin < s

smvm (segd,
= let
(inds, vals)
vecVals

products
in

Or a
SparseMatrix a

Acc (SparseMatrix Float
-> Acc (Vector Floa
—> Acc (Vector Float
smat) vec

/\

&

[0, 0, 6.0, 0, 7.0] = [(2, 6.0), (4, 7.0)]

Vector (Int,
(Segments

a)
SparseVector a)

[[10, 201, [], [30]] = (2, O, 1], [10, 20, 30])

unzip smat

backpermute (shape inds)
(\i -> inds!i) vec

zipWith (*) vecVals vals

foldSeg (+) 0 products segd

Friday, 2 October 2009

Architecture of
Data.Array.Accelerate

PLS

Friday, 2 October 2009

map (\x -> x + 1) arr

Friday, 2 October 2009

map (\x -> x + 1) arr

Map (Lam (Add PrimApp
(Zeroldx, Const 1))) arr

Friday, 2 October 2009

map (\x -> x + 1) arr

Map (Lam (Add PrimApp
(Zeroldx, Const 1))) arr

Friday, 2 October 2009

map (\x -> x + 1) arr

Map (Lam (Add PrimApp
(Zeroldx, Const 1))) arr

Friday, 2 October 2009

map (\x -> x + 1) arr

Map (Lam (Add PrimApp
(Zeroldx, Const 1))) arr

\ Code generation

__global void kernel (float *arr, int n)

I

Friday, 2 October 2009

map (\x -> x + 1) arr

Map (Lam (Add PrimApp
(Zeroldx, Const 1))) arr

\ Code generation

__global void kernel (float *arr, int n)

I

- O O
QO QO -

O O O

QO

o
-0

Friday, 2 October 2009

map (\x -> x + 1) arr

Map (Lam (Add PrimApp
(Zeroldx, Const 1))) arr

\ Code generation

__global void kernel (float *arr, int n)

I

Friday, 2 October 2009

1The API of
Data.Array.Accelerate

(The main bits)

PLS

Friday, 2 October 2009

Array types

data Array dim e — regular, multi-dimensional arrays

type DIMO = ()

type DIM1 = Int

type DIM2 = (Int, Int)
(and so on)

®
I

type Scalar
type Vector e

= Array DIMO e
Array DIM1 e

Friday, 2 October 2009

Array types

data Array dim e — regular, multi-dimensional arrays

type DIMO = ()

type DIM1 = Int

type DIM2 = (Int, Int)
(and so on)

type Scalar e = Array DIMO e
type Vector e Array DIMI1 e

EDSL forms

data Exp e — scalar expression form
data Acc a — array expression form

Friday, 2 October 2009

Array types

data Array dim e — regular, multi-dimensional arrays

type DIMO = ()
type DIM1 = Int

type DIM2 = (Int, Int)
(and so on)
type Scalar e = Array DIMO e

type Vector e Array DIMI1 e

EDSL forms
data Exp e — scalar expression form
data Acc a — array expression form
Classes
class Elem e — scalar and tuples types

class Elem ix => Ix ix — unit and integer tuples

Friday, 2 October 2009

Scalar operations

instance Num (Exp e) — overloaded arithmetic
instance Integral (Exp e)
{and so on)
G e (e T B e — comparisons
(>*), (>=*), min, max
(&&*), (|]|*), not — logical operators
(2l Il em st — conditional expression

=> Exp Bool -> (Exp t, Exp t) -> Exp t

(!) :: (Ix dim, Elem e) — scalar indexing
=> Acc (Array dim e) -> Exp dim -> Exp e

shape :: Ix dim — vyield array shape
=> Acc (Array dim e) -> Exp dim

Friday, 2 October 2009

Collective array operations — creation

— use an array from Haskell land
use :: (Ix dim, Elem e)
=> Array dim e -> Acc (Array dim e)

— create a singleton
unit s Elem<e =>-Exp e —> Acc (Scalar e)

— multi-dimensional replication

replicate :: (SlicelIx slix, Elem e)
=> ExXp slix
-> Acc (Array (Slice slix) e)

-> Acc (Array (SliceDim slix) e)

— Example: replicate (All, 10, All) twoDimArr

Friday, 2 October 2009

Collective array operations — slicing

— slice extraction
slice :: (SlicelIx slix, Elem e)
=> Acc (Array (SliceDim slix) e)
-> Exp slix
-> Acc (Array (Slice slix) e)

— Example: slice (5, All, 7) threeDimArr

Friday, 2 October 2009

Collective array operations — mapping

map :: (IX dim, Elem a, Elem b)
=> (Exp a -> Exp b)

-> Acc

-> AccC

Z:3 Dt laetss
==

=

=

=

(Array dim a)
(Array dim b)

(IX dim, Elem a, Elem b, Elem c)
(Exp a -> Exp b -> Exp ¢)

Acc (Array dim a)

Acc (Array dim b)

Acc (Array dim c)

Friday, 2 October 2009

fold

sSCan

Collective array operations — reductions

(IX dim, Elem a)

(EXp a -> Exp a -> Exp a) — associative
Exp a
Acc (Array dim a)

Acc (Scalar a)

Elem a

(EXp a -> Exp a -> Exp a) — associative
ExXp a

Acc (Vector a)

(Acc (Vector a), Acc (Scalar a))

Friday, 2 October 2009

Collective array operations — permutations

permute :: (IX dim, IxXx dim', Elem a)
=> (Exp a -> Exp a -> Exp a)
-> Acc (Array dim' a)
-> (Exp dim -> Exp dim')
-> Acc (Array dim a)
-> Acc (Array dim' a)

backpermute :: (Ix dim, IxX dim', Elem a)
=> Exp dim'
-> (Exp dim' -> Exp dim)
-> Acc (Array dim a)
-> Acc (Array dim' a)

Friday, 2 October 2009

Dense Matrix-Matrix Multiplication

1000000

100000
%)

2 10000
o
O
%

= 1000
£

= 100
=

1

128 256 512 1024
size of square NxN matrix
© Unboxed Haskell arrays © Delayed arrays Plain C © Mac OS vecLib

Regular arrays in package dph-seq
@ 3.06 GHz Core 2 Duo (with GHC 6.11)

Friday, 2 October 2009

Conclusion

% EDSL for processing multi-dimensional arrays
* Collective array operations (highly data parallel)
* Support for multiple backends

% Status:

» Very early version on Hackage (only interpreter)

http://hackage.haskell.org/package/accelerate

» Currently porting GPU backend over

» Looking for backend contributors PLS

Friday, 2 October 2009

