

 The imagination driving Australia’s ICT future

Solving the expression problem in
Haskell

Sean Seefried

Hello all. This is some work I did while I was doing my PhD under the supervision of Manuel Chakravarty and Gabi Keller (who are
both present in the audience today). But as you can see now I’m working at NICTA. The only background knowledge I’m assuming
in this talk is a fairly rudimentary understanding of type classes and how they are implemented with dictionaries. I’ll explain
everything else in as much detail as is necessary.

 The imagination driving Australia’s ICT future

What is the expression problem?

• It’s about extensible data types

• Problem is to extend:
– variants of a data type
– methods on that data type
– without modifying existing code
– with separate compilation
– It’d be nice if it was statically typed too

• Plug-in compilers need a solution

[3:00] (2:30)
So, what is the expression problem? Well, the term was first coined by Philip Wadler on the Java genericity mailing list. The
problem came up in the context of an interpreter for a small expression-based language, hence the name “expression problem”.
The problem was fairly simple to express. Say we have a data type, in this case representing expressions. This data type will have
a number of variants. In this talk, I’m going to use this word exclusively. In functional languages such as Haskell and OCaml, a
variant refers to that thing you create with a specific constructor. In an OO language it’s a subclass of the a base class. Naturally,
you also have some methods that operate on this data type. (In this talk I’ll use the word method and function interchangeably.)
The expression problem is this: how do we extend the variants and the methods without modifying existing code. This amounts
to defining the extensions in a new module. Naturally, it should be possible to compile the extensions separately without requiring
the source of the other modules. Back in 1998, static typing was something that was considered an added bonus but not entirely
necessary. Since I’m solving this problem in Haskell, though, a solution will automatically have this property.
The expression problem is perhaps not the best name. When you think expression problem think “extensible data types”.
Back when the expression problem was first posed the reason they wanted to solve this problem was primarily one of good
software engineering practice. Going back and modifying source code is tedious and error prone. The old code may have been
well-used and the worry is that you’ll introduce new bugs. I needed to solve the expression problem. During my PhD I became
interested in the idea of a plug-in compiler, a compiler constructed in such a manner that it could be extended by plug-ins. The
basic idea was to expose parts of the compiler, such as the AST and accompanying functions, and allow users to write new
functionality. But this is going to require that new functions and new variants can be added to the AST. The central idea of a plug-
in compiler is that you don’t have to touch the source of the compiler. In fact, it makes good commercial sense to keep this a trade
secret. Solving the expression problem was a necessity.

 The imagination driving Australia’s ICT future

Functional vs. Objected Oriented

• Functional languages
– easy to add new methods

• they’re just functions
– impossible to add new variants

• must modify data type declaration

• Object Oriented
– easy to add new variants

• Just subclass
– impossible to add new methods

• Must modify base class

[3:30] (0:30)
Functional languages and objected oriented languages actually solve one half of the expression problem, but complementary
halves. In functional languages it is easy to add new methods. They’re just functions. But to add new variants there is no choice
but to go back and change the original data type declaration.

On the other hand in object oriented languages, it’s easier to add new variants. Usually you’ll define a data type by defining a base
class and the sub-classing that base class for each new variant. You can see the problem. You have to go back and modify the
base class to add new methods. It’s not enough to sub-class the base class and add new methods since that does not allow you
to add new methods to the existing variants.

I haven’t written this on the slide but there is something called the Visitor Pattern. This allows you to write new methods on a class
simply by passing in a visitor to an object. The downside is that the variants are hard coded inside the visitor method. Basically,
you’re in the same situation as with functional languages.

 The imagination driving Australia’s ICT future

What would it look like in HaskellX?

Need a way to open a data type

module Exp where

open data Exp = Var String
 | Lam String Exp
 | App Exp Exp

alpha :: Exp -> (String, String) -> Exp
alpha (Var v) s = swap s v
alpha (Lam name body) ...
alpha (App e1 e2) ...

[4:00] (0:30)
Let’s imagine a new Haskell, HaskellX, that provides support for extensible data types. It has a new “open data” keyword that
allows you to declare a data type which can later be extended.
We can then write a number a number of functions on this data, as usual.
Our running example in this talk is the pure, un-typed lambda calculus. These three constructors introduce our first three variants:
variables, lambda abstractions and applications.
Our first function on this data type is alpha conversion -- taking a lambda expression and replacing all occurrences of one variable
name with another. This one is dead simple and does not make a distinction between bound and free variables.

I’m only going to show the body of the Var equation here.

 The imagination driving Australia’s ICT future

What would it look like in Haskell?

And extend a data type

module Eval where

extend data Exp = Let String Exp Exp

alpha (Let name exp body) ...

eval :: Exp -> Env -> Exp
eval (Var x) = ...
eval (Lam name body) = ...
eval (App e1 e2) = ...
eval (Let name exp body) = ...

type Env = [(String, Exp)]

[4:30] (0:30)

In a new module, called Eval, we extend the lambda calculus with let-expressions using a new “extend data” keyword.
First we introduce the missing equation on the Let variant for the alpha function. In HaskellX it is an error to redefine an equation
on an existing variant.
Next we introduce a function to evaluate lambda expressions using beta-reduction.
So that’s it for HaskellX. In the rest of the talk I’m going to try to show you how we can encode this behaviour using existing
features of Haskell. We could use this as the basis for an implementation of HaskellX, or more immediately, as an idiomatic way of
programming extensible data types. I already have, in a plug-in compiler called PHRaC.
Now I wonder what feature of Haskell could be used to encode open data types?

 The imagination driving Australia’s ICT future

Features of the solution

• Type classes
– only candidate because they’re open
– need to be multi-parameter

• Existential types
– Allow dynamic dispatch, a la Läufer.

• Recursive Dictionaries
– Introducing retrospective super-classing

• Plus:
– scoped type variables
– kind annotations

[5:30](1:00)
Okay, the answer is pretty obvious. It’s Type Classes since they’re the only declaration form in Haskell that is open. But equally as
important are existential types which allow us to provide a kind of dynamic dispatch quite similar to the way it occurs in objected
oriented languages. We also use an experimental feature introduced in GHC 6.4 called recursive dictionaries. I’ll explain them in
full when we come to them. We use a trick, due to John Hughes, but which I coined “retrospective super-classing”. In short, they
allow you to specify the super-class of a class after (i.e. in another module) you’ve declared the class!

So, these are the big three things that make my solution possible. We also need a few other things such as scoped type variables
and kind annotations. But for fairly boring reasons.

 The imagination driving Australia’s ICT future

Läufer’s method

data Exp = forall b. Alpha b => MkExp b

data Exp_0 = Var String | ... | App Exp Exp

class Alpha b where
 alpha :: b -> (String, String) -> Exp

instance Alpha Exp_0 where
 alpha (Var v) = MkExp (Var (swap s v))
 ...
 alpha (App e1 e2) = ...

instance Alpha Exp where
 alpha (MkExp e) = alpha e

[9:00](2:00)
My technique is an extension of Konstantin Läufer’s dynamic dispatch method. I’ll spend a short time explaining how it works.
CLICK
This is called the wrapper type. It is an existentially quantified type that encapsulates functionality for component types. For
historical reasons you introduce them with a forall keyword which is downright confusing. What’s really cool about existential
types is that you can encapsulate a class context within them, in this case “Alpha b”. What actually happens is that the dictionary
is also encapsulated. In fact, if we didn’t include the class context then it would not be possible to apply any methods to values
wrapped by the MkExp constructor.
CLICK
Exp_0 I call a component type. A uniform interface to all component types is kept by making them all instances of....
CLICK
... the functionality class. It defines the functionality for the wrapper type. Look carefully at the type here though. Notice that where
we used to have the first occurrence of the Exp type we now have B. That makes sense. But notice that the second occurrence is
the wrapper type. Hey, you might want to call some other function on the result, right?
CLICK
A component instance then provides the functionality for a given component type. I’ve decided again to just show the body of the
equation on the Var variant. Notice that we’ve added the MkExp constructor in order to wrap it up.
CLICK
And now for the final piece of the puzzle -- the unwrapping instance. You’re never going to see component types; they’re always
wrapped up. The right hand side makes sense because the dictionary for the component type accompanies it (inside the
existential wrapper type).

 The imagination driving Australia’s ICT future

Läufer’s method

data Exp = forall b. Alpha b => MkExp b

data Exp_0 = Var String | ... | App Exp Exp

class Alpha b where
 alpha :: b -> (String, String) -> Exp

instance Alpha Exp_0 where
 alpha (Var v) = MkExp (Var (swap s v))
 ...
 alpha (App e1 e2) = ...

instance Alpha Exp where
 alpha (MkExp e) = alpha e

Wrapper Type

[9:00](2:00)
My technique is an extension of Konstantin Läufer’s dynamic dispatch method. I’ll spend a short time explaining how it works.
CLICK
This is called the wrapper type. It is an existentially quantified type that encapsulates functionality for component types. For
historical reasons you introduce them with a forall keyword which is downright confusing. What’s really cool about existential
types is that you can encapsulate a class context within them, in this case “Alpha b”. What actually happens is that the dictionary
is also encapsulated. In fact, if we didn’t include the class context then it would not be possible to apply any methods to values
wrapped by the MkExp constructor.
CLICK
Exp_0 I call a component type. A uniform interface to all component types is kept by making them all instances of....
CLICK
... the functionality class. It defines the functionality for the wrapper type. Look carefully at the type here though. Notice that where
we used to have the first occurrence of the Exp type we now have B. That makes sense. But notice that the second occurrence is
the wrapper type. Hey, you might want to call some other function on the result, right?
CLICK
A component instance then provides the functionality for a given component type. I’ve decided again to just show the body of the
equation on the Var variant. Notice that we’ve added the MkExp constructor in order to wrap it up.
CLICK
And now for the final piece of the puzzle -- the unwrapping instance. You’re never going to see component types; they’re always
wrapped up. The right hand side makes sense because the dictionary for the component type accompanies it (inside the
existential wrapper type).

 The imagination driving Australia’s ICT future

Läufer’s method

data Exp = forall b. Alpha b => MkExp b

data Exp_0 = Var String | ... | App Exp Exp

class Alpha b where
 alpha :: b -> (String, String) -> Exp

instance Alpha Exp_0 where
 alpha (Var v) = MkExp (Var (swap s v))
 ...
 alpha (App e1 e2) = ...

instance Alpha Exp where
 alpha (MkExp e) = alpha e

Wrapper Type

Component
Type

[9:00](2:00)
My technique is an extension of Konstantin Läufer’s dynamic dispatch method. I’ll spend a short time explaining how it works.
CLICK
This is called the wrapper type. It is an existentially quantified type that encapsulates functionality for component types. For
historical reasons you introduce them with a forall keyword which is downright confusing. What’s really cool about existential
types is that you can encapsulate a class context within them, in this case “Alpha b”. What actually happens is that the dictionary
is also encapsulated. In fact, if we didn’t include the class context then it would not be possible to apply any methods to values
wrapped by the MkExp constructor.
CLICK
Exp_0 I call a component type. A uniform interface to all component types is kept by making them all instances of....
CLICK
... the functionality class. It defines the functionality for the wrapper type. Look carefully at the type here though. Notice that where
we used to have the first occurrence of the Exp type we now have B. That makes sense. But notice that the second occurrence is
the wrapper type. Hey, you might want to call some other function on the result, right?
CLICK
A component instance then provides the functionality for a given component type. I’ve decided again to just show the body of the
equation on the Var variant. Notice that we’ve added the MkExp constructor in order to wrap it up.
CLICK
And now for the final piece of the puzzle -- the unwrapping instance. You’re never going to see component types; they’re always
wrapped up. The right hand side makes sense because the dictionary for the component type accompanies it (inside the
existential wrapper type).

 The imagination driving Australia’s ICT future

Läufer’s method

data Exp = forall b. Alpha b => MkExp b

data Exp_0 = Var String | ... | App Exp Exp

class Alpha b where
 alpha :: b -> (String, String) -> Exp

instance Alpha Exp_0 where
 alpha (Var v) = MkExp (Var (swap s v))
 ...
 alpha (App e1 e2) = ...

instance Alpha Exp where
 alpha (MkExp e) = alpha e

Wrapper Type

Component
Type

Functionality
Class

[9:00](2:00)
My technique is an extension of Konstantin Läufer’s dynamic dispatch method. I’ll spend a short time explaining how it works.
CLICK
This is called the wrapper type. It is an existentially quantified type that encapsulates functionality for component types. For
historical reasons you introduce them with a forall keyword which is downright confusing. What’s really cool about existential
types is that you can encapsulate a class context within them, in this case “Alpha b”. What actually happens is that the dictionary
is also encapsulated. In fact, if we didn’t include the class context then it would not be possible to apply any methods to values
wrapped by the MkExp constructor.
CLICK
Exp_0 I call a component type. A uniform interface to all component types is kept by making them all instances of....
CLICK
... the functionality class. It defines the functionality for the wrapper type. Look carefully at the type here though. Notice that where
we used to have the first occurrence of the Exp type we now have B. That makes sense. But notice that the second occurrence is
the wrapper type. Hey, you might want to call some other function on the result, right?
CLICK
A component instance then provides the functionality for a given component type. I’ve decided again to just show the body of the
equation on the Var variant. Notice that we’ve added the MkExp constructor in order to wrap it up.
CLICK
And now for the final piece of the puzzle -- the unwrapping instance. You’re never going to see component types; they’re always
wrapped up. The right hand side makes sense because the dictionary for the component type accompanies it (inside the
existential wrapper type).

 The imagination driving Australia’s ICT future

Läufer’s method

data Exp = forall b. Alpha b => MkExp b

data Exp_0 = Var String | ... | App Exp Exp

class Alpha b where
 alpha :: b -> (String, String) -> Exp

instance Alpha Exp_0 where
 alpha (Var v) = MkExp (Var (swap s v))
 ...
 alpha (App e1 e2) = ...

instance Alpha Exp where
 alpha (MkExp e) = alpha e

Wrapper Type

Component
Type

Functionality
Class

Functionality
Instance

[9:00](2:00)
My technique is an extension of Konstantin Läufer’s dynamic dispatch method. I’ll spend a short time explaining how it works.
CLICK
This is called the wrapper type. It is an existentially quantified type that encapsulates functionality for component types. For
historical reasons you introduce them with a forall keyword which is downright confusing. What’s really cool about existential
types is that you can encapsulate a class context within them, in this case “Alpha b”. What actually happens is that the dictionary
is also encapsulated. In fact, if we didn’t include the class context then it would not be possible to apply any methods to values
wrapped by the MkExp constructor.
CLICK
Exp_0 I call a component type. A uniform interface to all component types is kept by making them all instances of....
CLICK
... the functionality class. It defines the functionality for the wrapper type. Look carefully at the type here though. Notice that where
we used to have the first occurrence of the Exp type we now have B. That makes sense. But notice that the second occurrence is
the wrapper type. Hey, you might want to call some other function on the result, right?
CLICK
A component instance then provides the functionality for a given component type. I’ve decided again to just show the body of the
equation on the Var variant. Notice that we’ve added the MkExp constructor in order to wrap it up.
CLICK
And now for the final piece of the puzzle -- the unwrapping instance. You’re never going to see component types; they’re always
wrapped up. The right hand side makes sense because the dictionary for the component type accompanies it (inside the
existential wrapper type).

 The imagination driving Australia’s ICT future

Läufer’s method

data Exp = forall b. Alpha b => MkExp b

data Exp_0 = Var String | ... | App Exp Exp

class Alpha b where
 alpha :: b -> (String, String) -> Exp

instance Alpha Exp_0 where
 alpha (Var v) = MkExp (Var (swap s v))
 ...
 alpha (App e1 e2) = ...

instance Alpha Exp where
 alpha (MkExp e) = alpha e

Wrapper Type

Component
Type

Functionality
Class

Functionality
Instance

Unwrapping
Instance

[9:00](2:00)
My technique is an extension of Konstantin Läufer’s dynamic dispatch method. I’ll spend a short time explaining how it works.
CLICK
This is called the wrapper type. It is an existentially quantified type that encapsulates functionality for component types. For
historical reasons you introduce them with a forall keyword which is downright confusing. What’s really cool about existential
types is that you can encapsulate a class context within them, in this case “Alpha b”. What actually happens is that the dictionary
is also encapsulated. In fact, if we didn’t include the class context then it would not be possible to apply any methods to values
wrapped by the MkExp constructor.
CLICK
Exp_0 I call a component type. A uniform interface to all component types is kept by making them all instances of....
CLICK
... the functionality class. It defines the functionality for the wrapper type. Look carefully at the type here though. Notice that where
we used to have the first occurrence of the Exp type we now have B. That makes sense. But notice that the second occurrence is
the wrapper type. Hey, you might want to call some other function on the result, right?
CLICK
A component instance then provides the functionality for a given component type. I’ve decided again to just show the body of the
equation on the Var variant. Notice that we’ve added the MkExp constructor in order to wrap it up.
CLICK
And now for the final piece of the puzzle -- the unwrapping instance. You’re never going to see component types; they’re always
wrapped up. The right hand side makes sense because the dictionary for the component type accompanies it (inside the
existential wrapper type).

 The imagination driving Australia’s ICT future

Can we extend the variants?

data Exp_1 = Let String Exp Exp

instance Alpha Exp_1 where
 alpha (Let name exp body) = ...

[9:30](0:30)
Can we extend the variants? Yeah, sure. We just introduce a new component type and a new functionality instance.
Looks plausible doesn’t it? Well it has some problems which we’ll only really see when we consider methods.

 The imagination driving Australia’s ICT future

Can we extend the methods?

[10:30](1:30)
Type classes have inheritance. It seems plausible that we should be able to add new methods this way. Here I’ve declared class
Eval has inheriting the behaviour of class Alpha. Seems like it might work.
CLICK
But look carefully at the result type? It’s an Exp and we know that the only context that’s bound up inside that wrapper type is that
of class Alpha. You might want to use the result of this in a further call to “eval” and that’s clearly not going to work.
CLICK
We can try to get around this by introducing a new wrapper type, ExpE, which encapsulates the Eval class in its context. But
unfortunately this doesn’t work. I’ll show you why.
CLICK
Here’s an invocation of eval. CLICK. Notice it has a return type of ExpE. All well and good. CLICK. But now look what happens
when we try to try to apply “alpha” to it. CLICK. It just doesn’t work. alpha works on Exp`s not ExpE`s
CLICK
If anything like this is going to work we’re going to need just one wrapper type for all time. Somehow we need to make do with just
one class context inside the wrapper type.

 The imagination driving Australia’s ICT future

Can we extend the methods?

class Alpha b => Eval b where
eval :: b -> Env -> Exp

[10:30](1:30)
Type classes have inheritance. It seems plausible that we should be able to add new methods this way. Here I’ve declared class
Eval has inheriting the behaviour of class Alpha. Seems like it might work.
CLICK
But look carefully at the result type? It’s an Exp and we know that the only context that’s bound up inside that wrapper type is that
of class Alpha. You might want to use the result of this in a further call to “eval” and that’s clearly not going to work.
CLICK
We can try to get around this by introducing a new wrapper type, ExpE, which encapsulates the Eval class in its context. But
unfortunately this doesn’t work. I’ll show you why.
CLICK
Here’s an invocation of eval. CLICK. Notice it has a return type of ExpE. All well and good. CLICK. But now look what happens
when we try to try to apply “alpha” to it. CLICK. It just doesn’t work. alpha works on Exp`s not ExpE`s
CLICK
If anything like this is going to work we’re going to need just one wrapper type for all time. Somehow we need to make do with just
one class context inside the wrapper type.

 The imagination driving Australia’s ICT future

Can we extend the methods?

class Alpha b => Eval b where
eval :: b -> Env -> Exp

[10:30](1:30)
Type classes have inheritance. It seems plausible that we should be able to add new methods this way. Here I’ve declared class
Eval has inheriting the behaviour of class Alpha. Seems like it might work.
CLICK
But look carefully at the result type? It’s an Exp and we know that the only context that’s bound up inside that wrapper type is that
of class Alpha. You might want to use the result of this in a further call to “eval” and that’s clearly not going to work.
CLICK
We can try to get around this by introducing a new wrapper type, ExpE, which encapsulates the Eval class in its context. But
unfortunately this doesn’t work. I’ll show you why.
CLICK
Here’s an invocation of eval. CLICK. Notice it has a return type of ExpE. All well and good. CLICK. But now look what happens
when we try to try to apply “alpha” to it. CLICK. It just doesn’t work. alpha works on Exp`s not ExpE`s
CLICK
If anything like this is going to work we’re going to need just one wrapper type for all time. Somehow we need to make do with just
one class context inside the wrapper type.

 The imagination driving Australia’s ICT future

Can we extend the methods?

class Alpha b => Eval b where
eval :: b -> Env -> ExpE

data ExpE = forall b. Eval b => MkExpE b

[10:30](1:30)
Type classes have inheritance. It seems plausible that we should be able to add new methods this way. Here I’ve declared class
Eval has inheriting the behaviour of class Alpha. Seems like it might work.
CLICK
But look carefully at the result type? It’s an Exp and we know that the only context that’s bound up inside that wrapper type is that
of class Alpha. You might want to use the result of this in a further call to “eval” and that’s clearly not going to work.
CLICK
We can try to get around this by introducing a new wrapper type, ExpE, which encapsulates the Eval class in its context. But
unfortunately this doesn’t work. I’ll show you why.
CLICK
Here’s an invocation of eval. CLICK. Notice it has a return type of ExpE. All well and good. CLICK. But now look what happens
when we try to try to apply “alpha” to it. CLICK. It just doesn’t work. alpha works on Exp`s not ExpE`s
CLICK
If anything like this is going to work we’re going to need just one wrapper type for all time. Somehow we need to make do with just
one class context inside the wrapper type.

 The imagination driving Australia’s ICT future

Can we extend the methods?

class Alpha b => Eval b where
eval :: b -> Env -> ExpE

data ExpE = forall b. Eval b => MkExpE b

let exp = (MkExpE (Lam “x” (MkExp (Var “x”))))
in eval exp []

Let’s see it in action

[10:30](1:30)
Type classes have inheritance. It seems plausible that we should be able to add new methods this way. Here I’ve declared class
Eval has inheriting the behaviour of class Alpha. Seems like it might work.
CLICK
But look carefully at the result type? It’s an Exp and we know that the only context that’s bound up inside that wrapper type is that
of class Alpha. You might want to use the result of this in a further call to “eval” and that’s clearly not going to work.
CLICK
We can try to get around this by introducing a new wrapper type, ExpE, which encapsulates the Eval class in its context. But
unfortunately this doesn’t work. I’ll show you why.
CLICK
Here’s an invocation of eval. CLICK. Notice it has a return type of ExpE. All well and good. CLICK. But now look what happens
when we try to try to apply “alpha” to it. CLICK. It just doesn’t work. alpha works on Exp`s not ExpE`s
CLICK
If anything like this is going to work we’re going to need just one wrapper type for all time. Somehow we need to make do with just
one class context inside the wrapper type.

 The imagination driving Australia’s ICT future

Can we extend the methods?

class Alpha b => Eval b where
eval :: b -> Env -> ExpE

data ExpE = forall b. Eval b => MkExpE b

let exp = (MkExpE (Lam “x” (MkExp (Var “x”))))
in eval exp [] :: ExpE

Let’s see it in action

[10:30](1:30)
Type classes have inheritance. It seems plausible that we should be able to add new methods this way. Here I’ve declared class
Eval has inheriting the behaviour of class Alpha. Seems like it might work.
CLICK
But look carefully at the result type? It’s an Exp and we know that the only context that’s bound up inside that wrapper type is that
of class Alpha. You might want to use the result of this in a further call to “eval” and that’s clearly not going to work.
CLICK
We can try to get around this by introducing a new wrapper type, ExpE, which encapsulates the Eval class in its context. But
unfortunately this doesn’t work. I’ll show you why.
CLICK
Here’s an invocation of eval. CLICK. Notice it has a return type of ExpE. All well and good. CLICK. But now look what happens
when we try to try to apply “alpha” to it. CLICK. It just doesn’t work. alpha works on Exp`s not ExpE`s
CLICK
If anything like this is going to work we’re going to need just one wrapper type for all time. Somehow we need to make do with just
one class context inside the wrapper type.

 The imagination driving Australia’s ICT future

Can we extend the methods?

class Alpha b => Eval b where
eval :: b -> Env -> ExpE

data ExpE = forall b. Eval b => MkExpE b

let exp = (MkExpE (Lam “x” (MkExp (Var “x”))))
in eval exp [] alpha () (“x”,“y”)

Let’s see it in action

[10:30](1:30)
Type classes have inheritance. It seems plausible that we should be able to add new methods this way. Here I’ve declared class
Eval has inheriting the behaviour of class Alpha. Seems like it might work.
CLICK
But look carefully at the result type? It’s an Exp and we know that the only context that’s bound up inside that wrapper type is that
of class Alpha. You might want to use the result of this in a further call to “eval” and that’s clearly not going to work.
CLICK
We can try to get around this by introducing a new wrapper type, ExpE, which encapsulates the Eval class in its context. But
unfortunately this doesn’t work. I’ll show you why.
CLICK
Here’s an invocation of eval. CLICK. Notice it has a return type of ExpE. All well and good. CLICK. But now look what happens
when we try to try to apply “alpha” to it. CLICK. It just doesn’t work. alpha works on Exp`s not ExpE`s
CLICK
If anything like this is going to work we’re going to need just one wrapper type for all time. Somehow we need to make do with just
one class context inside the wrapper type.

 The imagination driving Australia’s ICT future

Can we extend the methods?

class Alpha b => Eval b where
eval :: b -> Env -> ExpE

data ExpE = forall b. Eval b => MkExpE b

let exp = (MkExpE (Lam “x” (MkExp (Var “x”))))
in eval exp [] alpha () (“x”,“y”)

Type Error
Let’s see it in action

[10:30](1:30)
Type classes have inheritance. It seems plausible that we should be able to add new methods this way. Here I’ve declared class
Eval has inheriting the behaviour of class Alpha. Seems like it might work.
CLICK
But look carefully at the result type? It’s an Exp and we know that the only context that’s bound up inside that wrapper type is that
of class Alpha. You might want to use the result of this in a further call to “eval” and that’s clearly not going to work.
CLICK
We can try to get around this by introducing a new wrapper type, ExpE, which encapsulates the Eval class in its context. But
unfortunately this doesn’t work. I’ll show you why.
CLICK
Here’s an invocation of eval. CLICK. Notice it has a return type of ExpE. All well and good. CLICK. But now look what happens
when we try to try to apply “alpha” to it. CLICK. It just doesn’t work. alpha works on Exp`s not ExpE`s
CLICK
If anything like this is going to work we’re going to need just one wrapper type for all time. Somehow we need to make do with just
one class context inside the wrapper type.

 The imagination driving Australia’s ICT future

Can we extend the methods?

class Alpha b => Eval b where
eval :: b -> Env -> ExpE

data ExpE = forall b. Eval b => MkExpE b

let exp = (MkExpE (Lam “x” (MkExp (Var “x”))))
in eval exp [] alpha () (“x”,“y”)

Type Error
Let’s see it in action

If only we could just have one wrapper type for all
time!

[10:30](1:30)
Type classes have inheritance. It seems plausible that we should be able to add new methods this way. Here I’ve declared class
Eval has inheriting the behaviour of class Alpha. Seems like it might work.
CLICK
But look carefully at the result type? It’s an Exp and we know that the only context that’s bound up inside that wrapper type is that
of class Alpha. You might want to use the result of this in a further call to “eval” and that’s clearly not going to work.
CLICK
We can try to get around this by introducing a new wrapper type, ExpE, which encapsulates the Eval class in its context. But
unfortunately this doesn’t work. I’ll show you why.
CLICK
Here’s an invocation of eval. CLICK. Notice it has a return type of ExpE. All well and good. CLICK. But now look what happens
when we try to try to apply “alpha” to it. CLICK. It just doesn’t work. alpha works on Exp`s not ExpE`s
CLICK
If anything like this is going to work we’re going to need just one wrapper type for all time. Somehow we need to make do with just
one class context inside the wrapper type.

 The imagination driving Australia’s ICT future

Time to fantasise

[12:00](1:30)
It’s time to fantasise. What if it were possible to declare a class like so. POINT TO IT. These declarations look pretty similar to
what we had before but they (CLICK) have a new “cxt” (short for context) parameter that appears in a number of places. But look
closer, this isn’t valid Haskell. CLICK. This is not a type parameter, it’s a class parameter, a way to abstract over classes,
something that Haskell does not have. But let’s pretend that it does.
CLICK
Look. This expression type checks. [POINT TO IT] The cxt parameter has been filled with Eval. This expression type checks
because the Eval class is a super-class of Alpha now and hence the eval method is available.
CLICK
The inheritance can, and in fact should be, bi-directional. Inheritance in the forward direction is useful, because as usual, you might
want to define extended functionality in terms of existing functionality. Notice it’s present in the declaration of class Eval. POINT TO
IT.
CLICK
Well it turns out this is not complete fantasy. John Hughes came up with a method that encodes what I’ve just shown you. I call it
retrospective super-classing, because you decide what is a super-class after the fact.

 The imagination driving Australia’s ICT future

Time to fantasise

class b => Alpha b where
alpha :: b -> (String, String) -> Exp

data Exp = forall b. Alpha b => MkExp b

What if we could do this?
 cxt cxt
 cxt

 cxt cxt

class Alpha cxt b => Eval b where
eval :: b -> Env Eval -> Exp Eval

[12:00](1:30)
It’s time to fantasise. What if it were possible to declare a class like so. POINT TO IT. These declarations look pretty similar to
what we had before but they (CLICK) have a new “cxt” (short for context) parameter that appears in a number of places. But look
closer, this isn’t valid Haskell. CLICK. This is not a type parameter, it’s a class parameter, a way to abstract over classes,
something that Haskell does not have. But let’s pretend that it does.
CLICK
Look. This expression type checks. [POINT TO IT] The cxt parameter has been filled with Eval. This expression type checks
because the Eval class is a super-class of Alpha now and hence the eval method is available.
CLICK
The inheritance can, and in fact should be, bi-directional. Inheritance in the forward direction is useful, because as usual, you might
want to define extended functionality in terms of existing functionality. Notice it’s present in the declaration of class Eval. POINT TO
IT.
CLICK
Well it turns out this is not complete fantasy. John Hughes came up with a method that encodes what I’ve just shown you. I call it
retrospective super-classing, because you decide what is a super-class after the fact.

 The imagination driving Australia’s ICT future

Time to fantasise

class b => Alpha b where
alpha :: b -> (String, String) -> Exp

data Exp = forall b. Alpha b => MkExp b

What if we could do this?
 cxt cxt
 cxt

 cxt cxt

class Alpha cxt b => Eval b where
eval :: b -> Env Eval -> Exp Eval

[12:00](1:30)
It’s time to fantasise. What if it were possible to declare a class like so. POINT TO IT. These declarations look pretty similar to
what we had before but they (CLICK) have a new “cxt” (short for context) parameter that appears in a number of places. But look
closer, this isn’t valid Haskell. CLICK. This is not a type parameter, it’s a class parameter, a way to abstract over classes,
something that Haskell does not have. But let’s pretend that it does.
CLICK
Look. This expression type checks. [POINT TO IT] The cxt parameter has been filled with Eval. This expression type checks
because the Eval class is a super-class of Alpha now and hence the eval method is available.
CLICK
The inheritance can, and in fact should be, bi-directional. Inheritance in the forward direction is useful, because as usual, you might
want to define extended functionality in terms of existing functionality. Notice it’s present in the declaration of class Eval. POINT TO
IT.
CLICK
Well it turns out this is not complete fantasy. John Hughes came up with a method that encodes what I’ve just shown you. I call it
retrospective super-classing, because you decide what is a super-class after the fact.

 The imagination driving Australia’s ICT future

Time to fantasise

class b => Alpha b where
alpha :: b -> (String, String) -> Exp

data Exp = forall b. Alpha b => MkExp b

What if we could do this?
 cxt cxt
 cxt

 cxt cxt

class Alpha cxt b => Eval b where
eval :: b -> Env Eval -> Exp Eval

[12:00](1:30)
It’s time to fantasise. What if it were possible to declare a class like so. POINT TO IT. These declarations look pretty similar to
what we had before but they (CLICK) have a new “cxt” (short for context) parameter that appears in a number of places. But look
closer, this isn’t valid Haskell. CLICK. This is not a type parameter, it’s a class parameter, a way to abstract over classes,
something that Haskell does not have. But let’s pretend that it does.
CLICK
Look. This expression type checks. [POINT TO IT] The cxt parameter has been filled with Eval. This expression type checks
because the Eval class is a super-class of Alpha now and hence the eval method is available.
CLICK
The inheritance can, and in fact should be, bi-directional. Inheritance in the forward direction is useful, because as usual, you might
want to define extended functionality in terms of existing functionality. Notice it’s present in the declaration of class Eval. POINT TO
IT.
CLICK
Well it turns out this is not complete fantasy. John Hughes came up with a method that encodes what I’ve just shown you. I call it
retrospective super-classing, because you decide what is a super-class after the fact.

 The imagination driving Australia’s ICT future

Time to fantasise

class b => Alpha b where
alpha :: b -> (String, String) -> Exp

data Exp = forall b. Alpha b => MkExp b

What if we could do this?
 cxt cxt
 cxt

 cxt cxt

Then this would type check!
eval (MkExp (Var “x”) :: Exp Eval) []

class Alpha cxt b => Eval b where
eval :: b -> Env Eval -> Exp Eval

[12:00](1:30)
It’s time to fantasise. What if it were possible to declare a class like so. POINT TO IT. These declarations look pretty similar to
what we had before but they (CLICK) have a new “cxt” (short for context) parameter that appears in a number of places. But look
closer, this isn’t valid Haskell. CLICK. This is not a type parameter, it’s a class parameter, a way to abstract over classes,
something that Haskell does not have. But let’s pretend that it does.
CLICK
Look. This expression type checks. [POINT TO IT] The cxt parameter has been filled with Eval. This expression type checks
because the Eval class is a super-class of Alpha now and hence the eval method is available.
CLICK
The inheritance can, and in fact should be, bi-directional. Inheritance in the forward direction is useful, because as usual, you might
want to define extended functionality in terms of existing functionality. Notice it’s present in the declaration of class Eval. POINT TO
IT.
CLICK
Well it turns out this is not complete fantasy. John Hughes came up with a method that encodes what I’ve just shown you. I call it
retrospective super-classing, because you decide what is a super-class after the fact.

 The imagination driving Australia’s ICT future

Time to fantasise

class b => Alpha b where
alpha :: b -> (String, String) -> Exp

data Exp = forall b. Alpha b => MkExp b

What if we could do this?
 cxt cxt
 cxt

 cxt cxt

Then this would type check!
eval (MkExp (Var “x”) :: Exp Eval) []

Inheritance is bi-directional

class Alpha cxt b => Eval b where
eval :: b -> Env Eval -> Exp Eval

[12:00](1:30)
It’s time to fantasise. What if it were possible to declare a class like so. POINT TO IT. These declarations look pretty similar to
what we had before but they (CLICK) have a new “cxt” (short for context) parameter that appears in a number of places. But look
closer, this isn’t valid Haskell. CLICK. This is not a type parameter, it’s a class parameter, a way to abstract over classes,
something that Haskell does not have. But let’s pretend that it does.
CLICK
Look. This expression type checks. [POINT TO IT] The cxt parameter has been filled with Eval. This expression type checks
because the Eval class is a super-class of Alpha now and hence the eval method is available.
CLICK
The inheritance can, and in fact should be, bi-directional. Inheritance in the forward direction is useful, because as usual, you might
want to define extended functionality in terms of existing functionality. Notice it’s present in the declaration of class Eval. POINT TO
IT.
CLICK
Well it turns out this is not complete fantasy. John Hughes came up with a method that encodes what I’ve just shown you. I call it
retrospective super-classing, because you decide what is a super-class after the fact.

 The imagination driving Australia’s ICT future

Time to fantasise

class b => Alpha b where
alpha :: b -> (String, String) -> Exp

data Exp = forall b. Alpha b => MkExp b

What if we could do this?
 cxt cxt
 cxt

 cxt cxt

John Hughes came up with something that encodes this.
I call it retrospective super-classing

Then this would type check!
eval (MkExp (Var “x”) :: Exp Eval) []

Inheritance is bi-directional

class Alpha cxt b => Eval b where
eval :: b -> Env Eval -> Exp Eval

[12:00](1:30)
It’s time to fantasise. What if it were possible to declare a class like so. POINT TO IT. These declarations look pretty similar to
what we had before but they (CLICK) have a new “cxt” (short for context) parameter that appears in a number of places. But look
closer, this isn’t valid Haskell. CLICK. This is not a type parameter, it’s a class parameter, a way to abstract over classes,
something that Haskell does not have. But let’s pretend that it does.
CLICK
Look. This expression type checks. [POINT TO IT] The cxt parameter has been filled with Eval. This expression type checks
because the Eval class is a super-class of Alpha now and hence the eval method is available.
CLICK
The inheritance can, and in fact should be, bi-directional. Inheritance in the forward direction is useful, because as usual, you might
want to define extended functionality in terms of existing functionality. Notice it’s present in the declaration of class Eval. POINT TO
IT.
CLICK
Well it turns out this is not complete fantasy. John Hughes came up with a method that encodes what I’ve just shown you. I call it
retrospective super-classing, because you decide what is a super-class after the fact.

 The imagination driving Australia’s ICT future

Retrospective super-classing

Implicit dictionaries become explicit.
The Sat class

class Sat a where dict :: a

Explicit dictionary declaration
data EvalD b =
 EvalD { eval’ :: b -> Env EvalD -> Exp EvalD }

Functionality classes
class Sat (cxt b) => Alpha cxt b where
 alpha :: b -> (String, String) -> Exp cxt

class (Sat (EvalD b), Alpha EvalD b) => Eval b where
 eval :: b -> Env EvalD -> Exp EvalD

[13:00](1:00)
The basic trick to retrospective super-classing is to make implicit dictionaries explicit. We introduce a new class, Sat (short for
satisfies) which has one method called “dict”. An instance of this class serves one purpose, to match up implicit dictionaries with
explicit dictionaries, which are just data types we define ourselves.
EvalD is an example of an explicit dictionary. It contains exactly the same methods as class Eval but we name the method with a
prime character.
We must now annotate the two functionality classes Alpha and Eval with Sat constraints. This Sat constraint POINT TO FIRST
should be read as saying, type B satisfies context C-X-T.
We’ll now have a look at the instance heads of the functionality instances for data type Exp_0.

 The imagination driving Australia’s ICT future

Retrospective super-classing

Instances for Exp_0
instance (Sat (cxt (Exp cxt))
 , Sat (cxt (Exp_0 cxt))
) => Alpha cxt (Exp_0 cxt) where
 alpha (Var v) = ...

instance (Sat (EvalD (Exp EvalD))
 , Sat (EvalD (Exp_0 EvalD))
) => Eval (Exp_0 EvalD) where
 eval (Var v) = ...

Knot-tying instance. (Creating the explicit dictionary)
instance Eval b => Sat (EvalD b) where
 dict = EvalD { eval’ = eval }

[14:30](1:30)
The instance declaration for Alpha says that any type that unifies with “Exp cxt” or “Exp_0 cxt” satisfies the context C-X-T, or if you
want, that class Alpha has super-class C-X-T. You might be wondering why there are two Sat constraints one for the wrapper type,
Exp, and one for Exp_0. You might not always need both of these constraints, but in my translation I like to play it safe. The
constraint on the Exp_0 type would be required if you wanted to create new values of the data type inside the method. The one on
Exp is required because we may be calling alpha recursively and it’s in the class constraints.
Now let’s look at the instance head for Eval. Notice that we’re saying that type Exp EvalD and Exp_0 EvalD satisfy the EvalD
context.
Finally, we’ll have a look how we create the explicit dicitionary. We assign the methods encapsulated in the explicit dictionary to
their implicit cousins. I like to think of this instance as “tying the knot” of Sat constraints. I’ll have more about to say this on the
next slide.

 The imagination driving Australia’s ICT future

Does this really work?

Let’s look at it in use
let exp = lam “v” (var “v”)
 :: Sat (cxt (Exp cxt)) => Exp cxt
in eval’ dict exp [] :: Exp EvalD

Constraint resolution
 Sat (EvalD (Exp EvalD)) from use of method “dict”
➾ Eval (Exp EvalD) from instance head of knot-tying instance
➾ Sat (EvalD (Exp EvalD)) from instance head of Eval (Exp_0 EvalD)

This is only possible with recursive dictionaries

[16:00](1:30)
Now let’s have a look at a sample use. Notice we no longer make a call to “eval” we make a call to eval-prime dict instead. This is
necessary so that constraint resolution works properly. I’ll now talk about that a little bit. THIS constraint is introduced from the use
of method dict. If we look at the instance head of the Sat instance GO BACK ONE SLIDE we can see that it introduces this
constraint POINT TO SECOND. This actually introduces a few constraints but one of them is this one here. POINT TO THIRD. We
are back where we started!

But the fantastic thing is -- this works as long as you are allowed to build recursive dictionaries. Recursive dictionaries are those
that are built using recursive functions once dictionary translation has been done. Recursive dictionaries, along with the extension
to the type checker necessary to allow them, have been possible since GHC 6.4. They have other useful applications. If you’re
interested in recursive dictionaries I can explain them in full during question time.

 The imagination driving Australia’s ICT future

Adding new variant

data Exp_1 cxt = Let String (Exp cxt)(Exp cxt)

instance (Sat (EvalD (Exp EvalD))
 , Sat (EvalD (Exp_0 EvalD))
 , Sat (EvalD (Exp_1 EvalD))
) => Alpha EvalD (Exp_1 EvalD) where
 alpha (Let name body exp) s =
 letE (swap s name) (alpha body s) (alpha exp s)

instance (Sat (EvalD (Exp EvalD))
 , Sat (EvalD (Exp_0 EvalD))
 , Sat (EvalD (Exp_1 EvalD))
) => Eval (Exp_1 EvalD) where
 eval (Let name body exp) env =
 eval' dict (app (lam name exp) body) env

[17:30](1:30)

 The imagination driving Australia’s ICT future

What I’ve left out

• Can’t extend beyond Eval in this example
• Every new class should have a new cxt

parameter for extensions
– class (Sat (EvalD cxt b), Alpha (EvalD cxt) b) =>

Eval cxt b

• Require a notion of “capping classes”
– empty extensions that “tie the knot”

• I’ve got a formal translation
– from the syntactic sugar to what we’ve seen.

20 minutes wasn’t really enough time to go into much detail about my solution. I’ve also simplified my solution somewhat.

 The imagination driving Australia’s ICT future

Related work

• Scala
– Zenger and Odersky.

• Makes sense - Scala fuses functional and OO
programming.

• Uses notion of mix-ins. But they’re well typed!

• Ocaml
– polymorphic variants. Jacques Garrigue

• Haskell
– Löh and Hinze.

• Not implemented. (Requires “best fit” pattern matching)
• Wouldn’t really work in plug-in setting

 The imagination driving Australia’s ICT future

The End

THE END

Demo available!

