
Graph based Type, Region, Effect, Closure,
Mutability, Purity and Escape inference

- or -
Drowning in Kinds

Ben Lippmeier

Australian National University

Drowning in Kinds 1

Recap from last time

• Many useful programs make use of state.

• In a language with effects, we can use destructive update to
modify the state.

• In a language without effects, we could:
– manually thread the state through the program.
– use a state monad to hide the state threading.

(Control.Monad.State)
– use a state monad to introduce the required data

dependencies, then do the destructive update anyway.
(IO / IORef / IOArray)

Drowning in Kinds 2

Problems:

• Untracked effects are bad news for many useful optimisations.
(eg full laziness, deforestation, let floating).

• Manual threading of state is tedious and error prone.

• Monadic code does not compose well with non-monadic code.

fun () fun ’ ()

= let x = f ... = do let x = f ...

y = map g x y <- mapM g’ x

in y return y

map :: (a -> b) -> a -> b

mapM :: Monad m => (a -> m b) -> a -> m b

Drowning in Kinds 3

Effect inference

Allow the programmer to use arbitrary computational effects, then
have the compiler infer where they are so it can optimise around
them.

Example: map.dump-core.ds

Drowning in Kinds 4

Regions

• A function which uses destructive update on local data should be
compatable with one that doesn’t, so long as the effects are not
visible to the caller.

• We need to differentiate local vs non-local data.

• Add a region variable to every data constructor. Use universal
quantification of regions to denote freshness of data.

• We don’t use regions on function constructors, because they
can’t be updated.

• We can perform effect masking at generalisation time.

Drowning in Kinds 5

fun1 x fun2 x

= do y = x; = do y = x;

y2 = y + x; y := y + x;

y3 = y2 + 1; y3 = y + 1;

y3; y3;

• fun1 has no effects.
fun1 :: forall %r1 %r2

. Int %r1 -> Int %r2

• fun2 has effects, but they are not visible in the function’s shape.
fun2 :: Int %r1 -(!e1)> Int %r3

:- !e1 = !{ ! Read %r2 ; ! Write %r2 };

Effects on %r2 can be masked, then the type generalised to be
the same as fun1.

Drowning in Kinds 6

Closures

A function might return a reference to data in its closure. This data is
shared between all applications of the function, but is not visible in its
shape or type environment.
fun1 :: forall %r1. () - > () - > Int %r1

fun1 ()

= let x = 5

in \() -> x

fun2 :: forall %r1. () -> Int %r1

fun2 = fun1 ()

The type for fun2 is here is wrong, %r1 is not fresh, it’s part of the
closure of the inner function.

Drowning in Kinds 7

A more descriptive type for fun1 would be:

fun1 :: forall %r1

. () - > () -($c1)> Int %r1

:- $c1 = ${ x : Int %r1 }

Now, when we come to generalise the type for fun2 we can avoid
quantifying regions which are free in the closure of the outermost
function.

fun2 :: () -($c1)> Int %r1

:- $c1 = ${ x : Int %r1 }

This problem is related to the one concerning the unsoundness of
Hindley-Milner style polymorphic type inference, ie the one that the
value restriction (and Leroy’s closure typing) solves.

Drowning in Kinds 8

Mutablity, Constness and Purity

• Reading an object which may change in the future is a
computational effect, and must be tracked.

• If you suspend a function application which is going to read data,
then that data should be immutable, else the result will be
dependant on when it is forced. (not usually what you want)

• We want to be able to write code which operates on both mutable
and immutable data structures ⇒ no Ref or IORef constructors!.

Drowning in Kinds 9

We can represent Mutablity, Constness and Purity as
type-class-esque constraints on regions and effects.

updateInt

:: Mutable %r1

=> Int %r1 -> Int %r2 -(!e1 $c1)> ()

:- !e1 = !{ ! Read %r2 ; ! Write %r1 ; }

, $c1 = ${ Int %r1 }

suspend

:: Pure !e1

=> (a -(!e1)> b) -> a -> b;

Drowning in Kinds 10

Example

Show map.ds

Drowning in Kinds 11

P is for pathological

printInt

:: forall %r1

. Int %r1 -(!e1)> ()

:- !e1 = !{ ! Read %r1 ; ! Console ; };

fun f = if b then f else printInt

fun :: forall %r1

. (Int %r1 -(!e1)> ()) -> Int %r1 -(!e1)> ()

:- !e1 = !{ ! Read %r1 ; ! Console ; };

Uh oh. What does the first !e1 in the type for fun mean?

Drowning in Kinds 12

The problem is that !e1 isn’t quantified, but we want to allow arbitrary
functions to be passed in for the first parameter.

If we treat !e1 as an extension variable and :- as an added
constraint, instead of a type-level where expression we would have:

fun :: forall %r1 !e1

. (Int %r1 -(!e1)> ()) -> Int %r1 -(!e1)> ()

:- !e1 = !{ ! Read %r1 ; ! Console ; };

But then in the Core IR we would be passing in a function’s own
effect as part of the type application every time we used it.

y = fun %r5 !{ ! Read %r1 ; ! Console ; !e1} g

Drowning in Kinds 13

Here’s another one:
(==) :: forall a %r1

=> Eq a

. a -> a -(!e1 $c1)> Bool %r1

:- !e1 = ! Read a

, $c1 = (x : a);

x1 :: Const %r5 => Int %r5;

x2 :: Mutable %r6 => Int %r6;

y = (x1 == x2)

This creates a mutability conflict, because %r5 and %r6 are being
forced to be the same via the type variable a. A region can’t be both
Const and Mutable at the same time.

Drowning in Kinds 14

And another:

select :: a -> a -> a;

select x y = if ... then x else y;

pi :: Const %r2 => Float %r2;

x1 :: Mutable %r3 => Float %r3;

y = select pi x1;

This seems like a reasonable thing to want to do, but creates another
mutability conflict.

We don’t want to be forced to copy top level constants every time we
compare them with mutable data.

Drowning in Kinds 15

Bi-directional unification is not the right operation.

• Bi-directional unifiction lies at the heart of Hindley-Milner.

• It’s key to designing a simple, decidable higher-order algorithm.

• It’s too strong a constraint for the region/effect/closure
information in these examples.

Unifying two things forces their types, regions, effects and closures
to be identical.

For region/effect/closure information in the right hand side of
selections we’re really interested in the sum (least upper bound) of
the possibilities.

Drowning in Kinds 16

Rewrites

Region/effect/closure variables in a contra-variant branch are always
inputs - ie they do not represent constraints on what that particular
variable can be. We can rewrite to the desired form.
fun :: forall %r1

. (Int %r1 -(!e1)> ()) -> Int %r1 -(!e1)> ()

:- !e1 = !{ ! Read %r1 ; ! Console ; };

rewrite to
fun :: forall %r1 %r2 !e1

:- (Int %r1 -(!e1)> ()) -> Int %r2 -(!e2)> ()

, !e2 = !{ ! Read %r3 ; ! Console ; !e1}

, %r3 = %{ % r1 ; %r2 }

Drowning in Kinds 17

Shape and Injection

(==) :: forall a b %r1

. (Eq a, Shape a b)

=> a -> b -(!e1 $c1)> Bool %r1

:- !e1 = !{ ! Read a; ! Read b; }

, $c1 = (x : a)

Shape forces a and b to have the same structure, without placing any
constraint on regions, effects or closures.

It is in the same spirit as the type equality witnesses in Fc, the
constraint is maintained during type inference and in the Core IR, but
no dictionary is passed at runtime.

Drowning in Kinds 18

The Injection constraint pushes the R/E/C info in the first argument
into a l.u.b along with the second.

select :: (Inject a c, Inject b c)

=> a -> b -> c;

pi :: Const %r2 => Float %r2;

x1 :: Mutable %r3 => Float %r3;

y :: (Const %r2 , Mutable %r3 , Blocked %r4)

=> Float %r4

:- %r4 = %{ % r2 ; %r3 }

y = select pi x1;

Drowning in Kinds 19

Escape (idea)

When we suspend an application we get a suspension of type a.

This suspension contains a reference to the function’s activation
record (containing its closure $c1) and the argument a, but this isn’t
tracked by the type system.

suspend

:: (Pure !e1 , Escape a, EscapeC $c1)

=> (a -(!e1 $c1)> b) -> a -> b

Drowning in Kinds 20

