
The Correspondence of Term Rewriting and Attribute
Grammars

Shirley Goldrei

SAPLING II, June 12th 2007, Macquarie University

Two basic abstractions for computation on
trees

• These are used in compiler generation
system for defining semantic analysis and
code generation
1.Term Rewriting
2. Attribute Grammar

• Examples of compiler generation systems
• Stratego/XT
• Eli

Attribute Grammars -
the basic idea

• Start with a tree
• Annotate the nodes with named values

(attributes)
• Attributes are computed by functions on

attribute values in other nodes
• Given a grammar and these attribute

dependencies an evaluator can be
automatically generated

Term Rewriting -
the basic idea

• Start with a tree
• Rules say “Everywhere you find this subtree

replace it with this other subtree” (and
repeat)

• The order in which rules are applied and the
tree is searched is either fixed or you
explicitly define them

So what’s so good about these
abstractions?

• Attribute Grammars
– Great for analysis tasks such as name or type

analysis where you don’t want the tree structure
to change

• Term Rewriting
– Great for simplifying expressions, optimisation

and other task where you want to effect changes
to the tree structure

What’s so good II

• Attribute Grammars
– You never have to think about the order of tree

traversals directly
• Term Rewriting

– Unfortunately either traversal order is fixed or
you are responsible for ensuring the rewrites are
confluent by programming the traversals
yourself

Now you want to write your own
compiler

• You start with a tree
• You want to do some analysis

• Say, check for programmer errors
• You might want to transform the source tree

• Say, into an intermediate language
• Do some more analysis

• Say, some dataflow analysis
• Do some more transformation

• Say, some optimisation
• etc. etc. etc.

What are you going to use?

What are you going to use?

• Attribute Grammars?

What are you going to use?

• Attribute Grammars?
• Term Rewriting?

What are you going to use?

• Attribute Grammars?
• Term Rewriting?
• Your favourite general purpose language?

What are you going to use?

• Attribute Grammars?
• Term Rewriting?
• Your favourite general purpose language?

– Most people choose this last option

What are you going to use?

• Attribute Grammars?
• Term Rewriting?
• Your favourite general purpose language?

– Most people choose this last option
• An improved abstraction that combines the

benefits of the others?

Steps to combining AG and TR

• Show a correspondence between the two
abstractions
Informal

Translate Term Rewriting into a Higher Order
Attribute Grammar Specification

Formal
Describe both abstractions in terms of a single
calculus

First Strategy

• With an appropriate syntax and an
automatic translation from Rewriting to HAG
we can use an AG evaluator with minimal
change

Operations of Rewriting
(e.g. Stratego - Bravenboer et. al. 2005)

Operator Success/Failure Effect on Tree Effect on Env.
id always succeeds none none

fail always fails none none

build
!t

always succeeds replace current subtree none

match and bind
?t0(t1..tn)

succeeds if the current
term “matches” the
given term in a refined
environment

none augmented with
bindings if match
succeeds

binary sequential
composition
s1;s2

succeed iff both sides
succeed

left side followed by the
right side

combined effect of both
sides

binary left choice
combinator

succeeds if either side
succeeds

left side or right side either lhs bindings are
added or rhs

non-deterministric
choice

as above as above as above

Example
GRAMMAR:

prog: Program -> Expr
plus: Expr -> Expr Expr
times: Expr -> Expr Expr
const: Expr -> idn

REWRITE RULE:
... ?times(e1, const(“0”)) ; !const(“0”) ...
... times(e1, const(“0”)) -> const(“0”) ...

ATTRIBUTE GRAMMAR SPECIFICATION:

RULE times: Expr ::= Expr Expr $ Expr COMPUTE
 Expr[1].s1_e1 = Expr[2].GENTREE; //binding
 Expr[1].s1_match = Expr[3].s1_match;
 Expr[4].GENTREE = IF (Expr[1].s1_match)
 THEN mkConst(“0”) ELSE mkNOTREE;
END;

RULE const: Expr ::= idn COMPUTE
 Expr.s1_match = EQUALS(idn, "0");
END;

Tree Walking Operations
(e.g. Stratego - Bravenboer et. al. 2005)

Operator Success/Failure Effect on Tree Effect on Env.

one(s) succeeds if s succeeds
on one child

first child subtree is
replaced

augmented by all
bindings in s

some(s) succeeds if s succeeds
on at least one child

all children on which s
succeeds are replaced

augmented by all
bindings in s

all(s) succeeds if s succeeds
on all children

replace all children
subtrees

augmented by all
bindings in s

congruence

recursive closure
rec(s)

succeeds if s succeeds

Example cont.
GRAMMAR:

prog: Program -> Expr
plus: Expr -> Expr Expr
times: Expr -> Expr Expr
const: Expr -> idn

REWRITE RULE:
one(times(e1, const(“0”)) -> const(“0”))

ATTRIBUTE GRAMMAR SPECIFICATION:

RULE prog: Program ::= Expr COMPUTE
 Program.s4_succeed = Expr[1].s2_match
END;

RULE times: Expr ::= Expr Expr $ Expr COMPUTE

 ... as before...

Second Strategy
a little more formal

• Extend the denotational semantics of
Gondow and Katayama 2000

• Build on their semantics of Higher Order
Attribute Grammars in terms of Cardelli
record calculus

• Add a semantics of rewriting in the same
calculus

• Implement prototype in Haskell

References

• Bravenboer, M., van Dam, A., Olmos, K., and Visser, E. Program transformation with
scoped dynamic rewrite rules. Tech. Rep. UU-CS-2005-005, Institute of Information
and Computing Sciences, Utrecht University, 2005.

• Gondow, K., and Katayama, T. Attribute grammars as record calculus - a structure
oriented denotational semantics of attribute grammars by using Cardelli’s record
calculus. Informatica (Slovenia) 24, 3 (2000).

