Implementing the
Pattern Calculus

from theory to practice

feife}}



VWhy!
Genericity by Value (functions)

l

Genericity by Type (ML, Haskell, Java Generics)
l - Generic Haskell

- Generics in Clean

- Scrap Your Boilerplate

- The Pure Pattern Calculus
- Generics for the masses

l / % etc.

Genericity by Shape (data-type generics)

Genericity by Function (higher order functions)




Interests

e Datatype-generic programming
® Compiler generators

® Program Transformations

feife}}



Pattern Calculus World

® Created by Barry Jay at UTS.
® portable patterns
® any expression can be a pattern

® data, structure, path and pattern
polymorphism

® A fair bit of work going on there as well.

® Macquarie is focussing on implementation.

feife}}



r — (x —qy True | y — False)
Az.A.x. True

equal

feife}}



Where are we going?

Done: UTS

In progress: UTS

Bronte

Interpreter

Pure Pattern
Calculus

feifer}

\

WV

Compiler

In progress: MQ

1\

Future: MQ

Datatype
GGeneric

Compiler
Generation

Program

Transformation



Approach

® |nterpreters to explore the space of solutions.
® |nterpreters are easy right! - Yay for Haskell!
® Compiler(s) once we get settled.

® Compilers are hard work right? - Yay for
Haskell.......

feife}}



A working interpreter

Pure remove recursive defns Our
,

Pattern set reduction order Pattern

Calculus / Calculus

explicit failure cases

direct encoding
syntax driven l

Our

interpreter




Untyped (so far)

® Ve are on the case.
® System-F-like (but not System-F)

® My changes push in the direction of
System-F anyway

® I’'m confident ...

feife}}



(E-Appl) t1 =t}
t1 to = ti Lo

(E-App2) to = th
v1 Lo = U1 t’é
(EPatt) P = p"
(p—gs|r)=(p —es|T)
(E-AppAbsVar)
(z —gs|r)v=> |z v]s
E-AppAbsConstrl
( ) (C —gs|r)C=s
(E-AppAbsConstr2)
C1 # Co
(01—>98"I‘) Cz=> T‘Oz
(E-AppAbsConstr3)
(C—gs|r)v=rwv
(E-AppAbsApp)

0 =0\d;

(dydo —s|r)(vive) = (dy = ((de—s| (v =7 (v1v2))) va) | (W =7 (v1 v2))) V1 V2



Where to now!

® We have a simpler semantics that does
what we need and will be (relatively) easy
to implement.

® Then choose/build a type system.

® Next is the IL/Abstract machine that best
suits the pattern calculus.

feife}}



feife}}

That’s not much

® Yeah, but...a whole world opens up from
there.

® How much benefit/cost do we get from
laziness!

® Compare this pattern matching mechanism
to others in use (fat-bar, rho-stratego, etc.)

® What coverage of datatype-generic
programming can you achieve!



feife}}

Can we embed this approach (these
semantics) in some existing language?

How can we use this as a term-rewriting
system?

How can we use this in compiler
generation!

Can we find any interesting optimisations?

Can we target existing |L?



Comments?

® Some of these ideas are interesting, some
are probably not.

® The point is, a real implementation opens
up options for us.

® |t makes new questions feasible to explore.

feife}}



