
Implementing the
Pattern Calculus

from theory to practice

Why?
Genericity by Value (functions)

Genericity by Type (ML, Haskell, Java Generics)

Genericity by Function (higher order functions)

Genericity by Shape (data-type generics)

 - Generic Haskell

 - Generics in Clean

 - Scrap Your Boilerplate

 - The Pure Pattern Calculus

 - Generics for the masses

 - etc.

Interests

• Datatype-generic programming

• Compiler generators

• Program Transformations

Pattern Calculus World

• Created by Barry Jay at UTS.

• portable patterns

• any expression can be a pattern

• data, structure, path and pattern
polymorphism

• A fair bit of work going on there as well.

• Macquarie is focussing on implementation.

fix. This compares favourably with the representation of numbers as the iterators
used to define the Church numerals.

Generic equality Now let us consider some novel programs. A generic equality
is defined by

equal = x → (x →{} True | y → False)

where the first argument is used as the pattern for matching against the second.
For example, equal (Successor Zero) (Successor Zero) reduces to True. This is a
simple example of pattern polymorphism where the pattern is created dynami-
cally.

The generic eliminator The generic eliminator is given by

elim = x → x y →y y

For example, elim Successor reduces to Successor y → y. Again, suppose that the
list constructors Nil and Cons are given and define singleton = x → Cons x Nil.
Then elim singleton reduces to Cons y Nil → y by reduction of the pattern.

Generic updating Patterns of the form x y are used to access data along
arbitrary paths through a data structure, i.e. to support path polymorphism.
Combining the use of pattern and path polymorphism yields the generic update
function defined in the introduction. When applied to a constructor c, and a
function f and a data structure d it replaces sub-terms of d of the form c t by
c (f t). For example, update c f ((c u) (c v)) reduces to (c (f u)) (c (f v)). In
general, update can be applied to cases. For example, update singleton f reduces
to

Cons y Nil → Cons (f y) Nil
| z y → (update singleton f z) (update singleton f y)
| y → y

Also, updating can be iterated to give finer control. For example, given con-
structors Salary, Employee and Department and a function f then the program

update Department (update Employee (update Salary f))

updates departmental employee salaries. Note that it is not necessary to know
how employees are represented within departments for this to work, so that a
new level of abstraction arises, similar to that which XML is intended to support.
The full range of XML paths can be handled by defining an appropriate abstract
data type, similar to that of signposts given in [HJS05a,HJS05b].

Wild-cards It is interesting to add a new constant denoted ? to the pure pattern
calculus, the wild-card. It has no free variables and is unaffected by substitution.
It is a data structure, is compatible with anything, and has the matching rule

{?//u}γ
θ = {}

for any γ and θ. That is, it behaves like a fresh binding variable in a pattern but
like a constructor in a body. For example, the second and first projections from
a pair can be encoded as elim (Pair ?) and elim (x → Pair x ?).

9

λx.λ.x.True

Where are we going?

Pure Pattern

Calculus

Interpreter

Compiler
Compiler

Generation

Done: UTS

Done: MQ

In progress: MQ

Bronte

In progress: UTS

Datatype

Generic

Programming

Future: MQ

Program

Transformation

Approach

• Interpreters to explore the space of solutions.

• Interpreters are easy right? - Yay for Haskell!

• Compiler(s) once we get settled.

• Compilers are hard work right? - Yay for
Haskell.......

A working interpreter
Pure

Pattern

Calculus

Our

Pattern

Calculus

syntax driven

remove recursive defns

set reduction order

explicit failure cases

Our

interpreter

direct encoding

Untyped (so far)

• We are on the case.

• System-F-like (but not System-F)

• My changes push in the direction of
System-F anyway

• I’m confident ...

Where to now?

• We have a simpler semantics that does
what we need and will be (relatively) easy
to implement.

• Then choose/build a type system.

• Next is the IL/Abstract machine that best
suits the pattern calculus.

That’s not much

• Yeah, but... a whole world opens up from
there.

• How much benefit/cost do we get from
laziness?

• Compare this pattern matching mechanism
to others in use (fat-bar, rho-stratego, etc.)

• What coverage of datatype-generic
programming can you achieve?

• Can we embed this approach (these
semantics) in some existing language?

• How can we use this as a term-rewriting
system?

• How can we use this in compiler
generation?

• Can we find any interesting optimisations?

• Can we target existing IL?

Comments?

• Some of these ideas are interesting, some
are probably not.

• The point is, a real implementation opens
up options for us.

• It makes new questions feasible to explore.

